Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Sep 1;108(3):177–193. doi: 10.1085/jgp.108.3.177

Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells

PMCID: PMC2229317  PMID: 8882862

Abstract

In the present study we used whole-cell patch clamp recordings to investigate swelling-activated Cl-currents (ICl-swell) in M-1 mouse cortical collecting duct (CCD) cells. Hypotonic cell swelling reversibly increased the whole-cell Cl- conductance by about 30-fold. The I-V relationship was outwardly-rectifying and ICl-swell displayed a characteristic voltage-dependence with relatively fast inactivation upon large depolarizing and slow activation upon hyperpolarizing voltage steps. Reversal potential measurements revealed a selectivity sequence SCN- > I- > Br- > Cl- > > gluconate. ICl-swell was inhibited by tamoxifen, NPPB (5-nitro-2(3-phenylpropylamino)-benzoate), DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid), flufenamic acid, niflumic acid, and glibenclamide, in descending order of potency. Extracellular cAMP had no significant effect. ICl-swell was Ca2+ independent, but current activation depended on the presence of a high- energy gamma-phosphate group from intracellular ATP or ATP gamma S. Moreover, it depended on the presence of intracellular Mg2+ and was inhibited by staurosporine, which indicates that a phosphorylation step is involved in channel activation. Increasing the cytosolic Ca2+ concentration by using ionomycin stimulated Cl- currents with a voltage dependence different from that of ICl-swell. Analysis of whole-cell current records during early onset of ICl-swell and during final recovery revealed discontinuous step-like changes of the whole-cell current level which were not observed under nonswelling conditions. A single-channel I-V curve constructed using the smallest resolvable current transitions detected at various holding potentials and revealed a slope conductance of 55, 15, and 8 pS at +120, 0, and -120 mV, respectively. The larger current steps observed in these recordings had about 2, 3, or 4 times the size of the putative single-channel current amplitude, suggesting a coordinated gating of several individual channels or channel subunits. In conclusion we have functionally characterized ICl-swell in M-1 CCD cells and have identified the underlying single channels in whole-cell current recordings.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman M. J., Wickman K. D., Clapham D. E. Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):153–179. doi: 10.1085/jgp.103.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altenberg G. A., Deitmer J. W., Glass D. C., Reuss L. P-glycoprotein-associated Cl- currents are activated by cell swelling but do not contribute to cell volume regulation. Cancer Res. 1994 Feb 1;54(3):618–622. [PubMed] [Google Scholar]
  3. Anderson M. P., Gregory R. J., Thompson S., Souza D. W., Paul S., Mulligan R. C., Smith A. E., Welsh M. J. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991 Jul 12;253(5016):202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  4. Doroshenko P., Neher E. Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J Physiol. 1992 Apr;449:197–218. doi: 10.1113/jphysiol.1992.sp019082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Díaz M., Valverde M. A., Higgins C. F., Rucăreanu C., Sepúlveda F. V. Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflugers Arch. 1993 Jan;422(4):347–353. doi: 10.1007/BF00374290. [DOI] [PubMed] [Google Scholar]
  6. Ehring G. R., Osipchuk Y. V., Cahalan M. D. Swelling-activated chloride channels in multidrug-sensitive and -resistant cells. J Gen Physiol. 1994 Dec;104(6):1129–1161. doi: 10.1085/jgp.104.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fu W. J., Kuwahara M., Marumo F. Mechanisms of regulatory volume decrease in collecting duct cells. Jpn J Physiol. 1995;45(1):97–109. doi: 10.2170/jjphysiol.45.97. [DOI] [PubMed] [Google Scholar]
  8. Gill D. R., Hyde S. C., Higgins C. F., Valverde M. A., Mintenig G. M., Sepúlveda F. V. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell. 1992 Oct 2;71(1):23–32. doi: 10.1016/0092-8674(92)90263-c. [DOI] [PubMed] [Google Scholar]
  9. Greger R., Allert N., Fröbe U., Normann C. Increase in cytosolic Ca2+ regulates exocytosis and Cl- conductance in HT29 cells. Pflugers Arch. 1993 Aug;424(3-4):329–334. doi: 10.1007/BF00384360. [DOI] [PubMed] [Google Scholar]
  10. Gründer S., Thiemann A., Pusch M., Jentsch T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992 Dec 24;360(6406):759–762. doi: 10.1038/360759a0. [DOI] [PubMed] [Google Scholar]
  11. Gschwentner M., Nagl U. O., Wöll E., Schmarda A., Ritter M., Paulmichl M. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels. Pflugers Arch. 1995 Aug;430(4):464–470. doi: 10.1007/BF00373882. [DOI] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hayslett J. P., Gögelein H., Kunzelmann K., Greger R. Characteristics of apical chloride channels in human colon cells (HT29). Pflugers Arch. 1987 Nov;410(4-5):487–494. doi: 10.1007/BF00586530. [DOI] [PubMed] [Google Scholar]
  14. Jackson P. S., Churchwell K., Ballatori N., Boyer J. L., Strange K. Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl- and ATP. Am J Physiol. 1996 Jan;270(1 Pt 1):C57–C66. doi: 10.1152/ajpcell.1996.270.1.C57. [DOI] [PubMed] [Google Scholar]
  15. Jackson P. S., Morrison R., Strange K. The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am J Physiol. 1994 Nov;267(5 Pt 1):C1203–C1209. doi: 10.1152/ajpcell.1994.267.5.C1203. [DOI] [PubMed] [Google Scholar]
  16. Jackson P. S., Strange K. Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J Gen Physiol. 1995 May;105(5):661–676. doi: 10.1085/jgp.105.5.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jackson P. S., Strange K. Single-channel properties of a volume-sensitive anion conductance. Current activation occurs by abrupt switching of closed channels to an open state. J Gen Physiol. 1995 May;105(5):643–660. doi: 10.1085/jgp.105.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jirsch J. D., Loe D. W., Cole S. P., Deeley R. G., Fedida D. ATP is not required for anion current activated by cell swelling in multidrug-resistant lung cancer cells. Am J Physiol. 1994 Sep;267(3 Pt 1):C688–C699. doi: 10.1152/ajpcell.1994.267.3.C688. [DOI] [PubMed] [Google Scholar]
  19. Kelly M. E., Dixon S. J., Sims S. M. Outwardly rectifying chloride current in rabbit osteoclasts is activated by hyposmotic stimulation. J Physiol. 1994 Mar 15;475(3):377–389. doi: 10.1113/jphysiol.1994.sp020079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Korbmacher C., Segal A. S., Fejes-Tóth G., Giebisch G., Boulpaep E. L. Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells. J Gen Physiol. 1993 Oct;102(4):761–793. doi: 10.1085/jgp.102.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krapivinsky G. B., Ackerman M. J., Gordon E. A., Krapivinsky L. D., Clapham D. E. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln. Cell. 1994 Feb 11;76(3):439–448. doi: 10.1016/0092-8674(94)90109-0. [DOI] [PubMed] [Google Scholar]
  22. Kubo M., Okada Y. Volume-regulatory Cl- channel currents in cultured human epithelial cells. J Physiol. 1992 Oct;456:351–371. doi: 10.1113/jphysiol.1992.sp019340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Letz B., Ackermann A., Canessa C. M., Rossier B. C., Korbmacher C. Amiloride-sensitive sodium channels in confluent M-1 mouse cortical collecting duct cells. J Membr Biol. 1995 Nov;148(2):127–141. doi: 10.1007/BF00207269. [DOI] [PubMed] [Google Scholar]
  24. Lewis R. S., Ross P. E., Cahalan M. D. Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol. 1993 Jun;101(6):801–826. doi: 10.1085/jgp.101.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McCarty N. A., O'Neil R. G. Calcium signaling in cell volume regulation. Physiol Rev. 1992 Oct;72(4):1037–1061. doi: 10.1152/physrev.1992.72.4.1037. [DOI] [PubMed] [Google Scholar]
  26. Montrose-Rafizadeh C., Guggino W. B. Cell volume regulation in the nephron. Annu Rev Physiol. 1990;52:761–772. doi: 10.1146/annurev.ph.52.030190.003553. [DOI] [PubMed] [Google Scholar]
  27. Nilius B., Sehrer J., Droogmans G. Permeation properties and modulation of volume-activated Cl(-)-currents in human endothelial cells. Br J Pharmacol. 1994 Aug;112(4):1049–1056. doi: 10.1111/j.1476-5381.1994.tb13189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oike M., Droogmans G., Nilius B. The volume-activated chloride current in human endothelial cells depends on intracellular ATP. Pflugers Arch. 1994 May;427(1-2):184–186. doi: 10.1007/BF00585960. [DOI] [PubMed] [Google Scholar]
  29. Okada Y., Petersen C. C., Kubo M., Morishima S., Tominaga M. Osmotic swelling activates intermediate-conductance Cl- channels in human intestinal epithelial cells. Jpn J Physiol. 1994;44(4):403–409. doi: 10.2170/jjphysiol.44.403. [DOI] [PubMed] [Google Scholar]
  30. Pacaud P., Loirand G., Lavie J. L., Mironneau C., Mironneau J. Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1989 Apr;413(6):629–636. doi: 10.1007/BF00581813. [DOI] [PubMed] [Google Scholar]
  31. Paulmichl M., Li Y., Wickman K., Ackerman M., Peralta E., Clapham D. New mammalian chloride channel identified by expression cloning. Nature. 1992 Mar 19;356(6366):238–241. doi: 10.1038/356238a0. [DOI] [PubMed] [Google Scholar]
  32. Pusch M., Jentsch T. J. Molecular physiology of voltage-gated chloride channels. Physiol Rev. 1994 Oct;74(4):813–827. doi: 10.1152/physrev.1994.74.4.813. [DOI] [PubMed] [Google Scholar]
  33. Pusch M., Ludewig U., Rehfeldt A., Jentsch T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature. 1995 Feb 9;373(6514):527–531. doi: 10.1038/373527a0. [DOI] [PubMed] [Google Scholar]
  34. Rabe A., Disser J., Frömter E. Cl- channel inhibition by glibenclamide is not specific for the CFTR-type Cl- channel. Pflugers Arch. 1995 Mar;429(5):659–662. doi: 10.1007/BF00373986. [DOI] [PubMed] [Google Scholar]
  35. Rasola A., Galietta L. J., Gruenert D. C., Romeo G. Ionic selectivity of volume-sensitive currents in human epithelial cells. Biochim Biophys Acta. 1992 Aug 25;1139(4):319–323. doi: 10.1016/0925-4439(92)90108-y. [DOI] [PubMed] [Google Scholar]
  36. Rasola A., Galietta L. J., Gruenert D. C., Romeo G. Volume-sensitive chloride currents in four epithelial cell lines are not directly correlated to the expression of the MDR-1 gene. J Biol Chem. 1994 Jan 14;269(2):1432–1436. [PubMed] [Google Scholar]
  37. Ross P. E., Garber S. S., Cahalan M. D. Membrane chloride conductance and capacitance in Jurkat T lymphocytes during osmotic swelling. Biophys J. 1994 Jan;66(1):169–178. doi: 10.1016/S0006-3495(94)80754-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sheppard D. N., Welsh M. J. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol. 1992 Oct;100(4):573–591. doi: 10.1085/jgp.100.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Solc C. K., Wine J. J. Swelling-induced and depolarization-induced C1-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C658–C674. doi: 10.1152/ajpcell.1991.261.4.C658. [DOI] [PubMed] [Google Scholar]
  40. Stoddard J. S., Steinbach J. H., Simchowitz L. Whole cell Cl- currents in human neutrophils induced by cell swelling. Am J Physiol. 1993 Jul;265(1 Pt 1):C156–C165. doi: 10.1152/ajpcell.1993.265.1.C156. [DOI] [PubMed] [Google Scholar]
  41. Stoos B. A., Náray-Fejes-Tóth A., Carretero O. A., Ito S., Fejes-Tóth G. Characterization of a mouse cortical collecting duct cell line. Kidney Int. 1991 Jun;39(6):1168–1175. doi: 10.1038/ki.1991.148. [DOI] [PubMed] [Google Scholar]
  42. Strange K., Emma F., Jackson P. S. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol. 1996 Mar;270(3 Pt 1):C711–C730. doi: 10.1152/ajpcell.1996.270.3.C711. [DOI] [PubMed] [Google Scholar]
  43. Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
  44. Tilly B. C., van den Berghe N., Tertoolen L. G., Edixhoven M. J., de Jonge H. R. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem. 1993 Sep 25;268(27):19919–19922. [PubMed] [Google Scholar]
  45. Tinel H., Wehner F., Sauer H. Intracellular Ca2+ release and Ca2+ influx during regulatory volume decrease in IMCD cells. Am J Physiol. 1994 Jul;267(1 Pt 2):F130–F138. doi: 10.1152/ajprenal.1994.267.1.F130. [DOI] [PubMed] [Google Scholar]
  46. Tivey D. R., Simmons N. L., Aiton J. F. Role of passive potassium fluxes in cell volume regulation in cultured HeLa cells. J Membr Biol. 1985;87(2):93–105. doi: 10.1007/BF01870656. [DOI] [PubMed] [Google Scholar]
  47. Valverde M. A., Mintenig G. M., Sepúlveda F. V. Differential effects of tamoxifen and I- on three distinguishable chloride currents activated in T84 intestinal cells. Pflugers Arch. 1993 Dec;425(5-6):552–554. doi: 10.1007/BF00374885. [DOI] [PubMed] [Google Scholar]
  48. Vandenberg J. I., Yoshida A., Kirk K., Powell T. Swelling-activated and isoprenaline-activated chloride currents in guinea pig cardiac myocytes have distinct electrophysiology and pharmacology. J Gen Physiol. 1994 Dec;104(6):997–1017. doi: 10.1085/jgp.104.6.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Volk T., Frömter E., Korbmacher C. Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8478–8482. doi: 10.1073/pnas.92.18.8478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang J. J., Jacob T. J., Valverde M. A., Hardy S. P., Mintenig G. M., Sepúlveda F. V., Gill D. R., Hyde S. C., Trezise A. E., Higgins C. F. Tamoxifen blocks chloride channels. A possible mechanism for cataract formation. J Clin Invest. 1994 Oct;94(4):1690–1697. doi: 10.1172/JCI117514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES