Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Oct 1;108(4):295–313. doi: 10.1085/jgp.108.4.295

Are altered pHi and membrane potential in hu MDR 1 transfectants sufficient to cause MDR protein-mediated multidrug resistance?

PMCID: PMC2229331  PMID: 8894978

Abstract

Multidrug resistance (MDR) mediated by overexpression of the MDR protein (P-glycoprotein) has been associated with intracellular alkalinization, membrane depolarization, and other cellular alterations. However, virtually all MDR cell lines studied in detail have been created via protocols that involve growth on chemotherapeutic drugs, which can alter cells in many ways. Thus it is not clear which phenotypic alterations are explicitly due to MDR protein overexpression alone. To more precisely define the MDR phenotype mediated by hu MDR 1 protein, we co-transfected hu MDR 1 cDNA and a neomycin resistance marker into LR73 Chinese hamster ovary fibroblasts and selected stable G418 (geneticin) resistant transfectants. Several clones expressing different levels of hu MDR 1 protein were isolated. Unlike previous work with hu MDR 1 transfectants, the clones were not further selected with, or maintained on, chemotherapeutic drugs. These clones were analyzed for chemotherapeutic drug resistance, intracellular pH (pHi), membrane electrical potential (Vm), and stability of MDR 1 protein overexpression. LR73/hu MDR 1 clones exhibit elevated pHi and are depolarized, consistent with previous work with LR73/mu MDR 1 transfectants (Luz, J.G. L.Y. Wei, S. Basu, and P.D. Roepe. 1994. Biochemistry. 33:7239-7249). The extent of these perturbations is related to the level of hu MDR 1 protein that is expressed. Cytotoxicity experiments with untransfected LR73 cells with elevated pHi due to manipulating percent CO2 show that the pHi perturbations in the MDR 1 clones can account for much of the measured drug resistance. Membrane depolarization in the absence of MDR protein expression is also found to confer mild drug resistance, and we find that the pHi and Vm changes can conceivably account for the altered drug accumulation measured for representative clones. These data indicate that the MDR phenotype unequivocally mediated by MDR 1 protein overexpression alone can be fully explained by the perturbations in Vm and pHi that accompany this overexpression. In addition, MDR mediated by MDR protein overexpression alone differs significantly from that observed for MDR cell lines expressing similar levels of MDR protein but also exposed to chemotherapeutic drugs.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. H., Prat A. G., Gerweck L., Seneveratne T., Arceci R. J., Kramer R., Guidotti G., Cantiello H. F. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):312–316. doi: 10.1073/pnas.90.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altenberg G. A., Young G., Horton J. K., Glass D., Belli J. A., Reuss L. Changes in intra- or extracellular pH do not mediate P-glycoprotein-dependent multidrug resistance. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9735–9738. doi: 10.1073/pnas.90.20.9735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaudet L., Gros P. Functional dissection of P-glycoprotein nucleotide-binding domains in chimeric and mutant proteins. Modulation of drug resistance profiles. J Biol Chem. 1995 Jul 21;270(29):17159–17170. doi: 10.1074/jbc.270.29.17159. [DOI] [PubMed] [Google Scholar]
  4. Biedler J. L., Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970 Apr;30(4):1174–1184. [PubMed] [Google Scholar]
  5. Bornmann W. G., Roepe P. D. Analysis of drug transport kinetics in multidrug-resistant cells using a novel coumarin-vinblastine compound. Biochemistry. 1994 Oct 25;33(42):12665–12675. doi: 10.1021/bi00208a018. [DOI] [PubMed] [Google Scholar]
  6. Callaghan R., van Gorkom L. C., Epand R. M. A comparison of membrane properties and composition between cell lines selected and transfected for multi-drug resistance. Br J Cancer. 1992 Nov;66(5):781–786. doi: 10.1038/bjc.1992.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen C. J., Chin J. E., Ueda K., Clark D. P., Pastan I., Gottesman M. M., Roninson I. B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986 Nov 7;47(3):381–389. doi: 10.1016/0092-8674(86)90595-7. [DOI] [PubMed] [Google Scholar]
  8. Cheng J., Guffanti A. A., Krulwich T. A. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J Biol Chem. 1994 Nov 4;269(44):27365–27371. [PubMed] [Google Scholar]
  9. Choi K. H., Chen C. J., Kriegler M., Roninson I. B. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell. 1988 May 20;53(4):519–529. doi: 10.1016/0092-8674(88)90568-5. [DOI] [PubMed] [Google Scholar]
  10. Currier S. J., Kane S. E., Willingham M. C., Cardarelli C. O., Pastan I., Gottesman M. M. Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1-MDR2 transporters. J Biol Chem. 1992 Dec 15;267(35):25153–25159. [PubMed] [Google Scholar]
  11. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Oct 25;323(3):466–483. doi: 10.1016/0005-2736(73)90191-0. [DOI] [PubMed] [Google Scholar]
  12. Demant E. J., Sehested M., Jensen P. B. A model for computer simulation of P-glycoprotein and transmembrane delta pH-mediated anthracycline transport in multidrug-resistant tumor cells. Biochim Biophys Acta. 1990 Nov 12;1055(2):117–125. doi: 10.1016/0167-4889(90)90111-p. [DOI] [PubMed] [Google Scholar]
  13. Devault A., Gros P. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol. 1990 Apr;10(4):1652–1663. doi: 10.1128/mcb.10.4.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ehring G. R., Osipchuk Y. V., Cahalan M. D. Swelling-activated chloride channels in multidrug-sensitive and -resistant cells. J Gen Physiol. 1994 Dec;104(6):1129–1161. doi: 10.1085/jgp.104.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  16. Gill D. R., Hyde S. C., Higgins C. F., Valverde M. A., Mintenig G. M., Sepúlveda F. V. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell. 1992 Oct 2;71(1):23–32. doi: 10.1016/0092-8674(92)90263-c. [DOI] [PubMed] [Google Scholar]
  17. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  18. Gros P., Dhir R., Croop J., Talbot F. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7289–7293. doi: 10.1073/pnas.88.16.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guild B. C., Mulligan R. C., Gros P., Housman D. E. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1595–1599. doi: 10.1073/pnas.85.5.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hammond J. R., Johnstone R. M., Gros P. Enhanced efflux of [3H]vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene. Cancer Res. 1989 Jul 15;49(14):3867–3871. [PubMed] [Google Scholar]
  21. Hardy S. P., Goodfellow H. R., Valverde M. A., Gill D. R., Sepúlveda V., Higgins C. F. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J. 1995 Jan 3;14(1):68–75. doi: 10.1002/j.1460-2075.1995.tb06976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Higgins C. F., Gottesman M. M. Is the multidrug transporter a flippase? Trends Biochem Sci. 1992 Jan;17(1):18–21. doi: 10.1016/0968-0004(92)90419-a. [DOI] [PubMed] [Google Scholar]
  23. Homolya L., Holló Z., Germann U. A., Pastan I., Gottesman M. M., Sarkadi B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem. 1993 Oct 15;268(29):21493–21496. [PubMed] [Google Scholar]
  24. Huang N. N., Ahmed A. H., Wang D. J., Heppel L. A. Extracellular ATP stimulates increases in Na+/K+ pump activity, intracellular pH and uridine uptake in cultures of mammalian cells. Biochem Biophys Res Commun. 1992 Jan 31;182(2):836–843. doi: 10.1016/0006-291x(92)91808-4. [DOI] [PubMed] [Google Scholar]
  25. Iversen J. G. Unidirectional K+ fluxes in rat thymocytes stimulated by concanavalin A. J Cell Physiol. 1976 Oct;89(2):267–276. doi: 10.1002/jcp.1040890210. [DOI] [PubMed] [Google Scholar]
  26. Keizer H. G., Joenje H. Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil. J Natl Cancer Inst. 1989 May 3;81(9):706–709. doi: 10.1093/jnci/81.9.706. [DOI] [PubMed] [Google Scholar]
  27. Laris P. C., Hoffman J. F. Optical determination of electrical properties of red blood cell and Ehrlich ascites tumor cell membranes with fluorescent dyes. Soc Gen Physiol Ser. 1986;40:199–210. [PubMed] [Google Scholar]
  28. Li C., Ramjeesingh M., Bear C. E. Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J Biol Chem. 1996 May 17;271(20):11623–11626. doi: 10.1074/jbc.271.20.11623. [DOI] [PubMed] [Google Scholar]
  29. Li J., Eastman A. Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. Role of the Na(+)/H(+)-antiport. J Biol Chem. 1995 Feb 17;270(7):3203–3211. doi: 10.1074/jbc.270.7.3203. [DOI] [PubMed] [Google Scholar]
  30. Lincke C. R., van der Bliek A. M., Schuurhuis G. J., van der Velde-Koerts T., Smit J. J., Borst P. Multidrug resistance phenotype of human BRO melanoma cells transfected with a wild-type human mdr1 complementary DNA. Cancer Res. 1990 Mar 15;50(6):1779–1785. [PubMed] [Google Scholar]
  31. Loo T. W., Clarke D. M. Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein. J Biol Chem. 1993 Sep 25;268(27):19965–19972. [PubMed] [Google Scholar]
  32. Luckie D. B., Krouse M. E., Harper K. L., Law T. C., Wine J. J. Selection for MDR1/P-glycoprotein enhances swelling-activated K+ and Cl- currents in NIH/3T3 cells. Am J Physiol. 1994 Aug;267(2 Pt 1):C650–C658. doi: 10.1152/ajpcell.1994.267.2.C650. [DOI] [PubMed] [Google Scholar]
  33. Luz J. G., Wei L. Y., Basu S., Roepe P. D. Transfection of mu MDR 1 inhibits Na(+)-independent Cl-/-HCO3 exchange in Chinese hamster ovary cells. Biochemistry. 1994 Jun 14;33(23):7239–7249. doi: 10.1021/bi00189a028. [DOI] [PubMed] [Google Scholar]
  34. Mayer L. D., Bally M. B., Cullis P. R. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta. 1986 May 9;857(1):123–126. doi: 10.1016/0005-2736(86)90105-7. [DOI] [PubMed] [Google Scholar]
  35. Mayer L. D., Bally M. B., Hope M. J., Cullis P. R. Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. Biochim Biophys Acta. 1985 Jun 27;816(2):294–302. doi: 10.1016/0005-2736(85)90497-3. [DOI] [PubMed] [Google Scholar]
  36. Mayer L. D., Bally M. B., Hope M. J., Cullis P. R. Uptake of dibucaine into large unilamellar vesicles in response to a membrane potential. J Biol Chem. 1985 Jan 25;260(2):802–808. [PubMed] [Google Scholar]
  37. Montana V., Farkas D. L., Loew L. M. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry. 1989 May 30;28(11):4536–4539. doi: 10.1021/bi00437a003. [DOI] [PubMed] [Google Scholar]
  38. Parra-Lopez C., Lin R., Aspedon A., Groisman E. A. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J. 1994 Sep 1;13(17):3964–3972. doi: 10.1002/j.1460-2075.1994.tb06712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Praet M., Defrise-Quertain F., Ruysschaert J. M. Comparison of adriamycin and derivatives uptake into large unilamellar lipid vesicles in response to a membrane potential. Biochim Biophys Acta. 1993 Jun 5;1148(2):342–350. doi: 10.1016/0005-2736(93)90148-s. [DOI] [PubMed] [Google Scholar]
  40. Pérez-Sala D., Collado-Escobar D., Mollinedo F. Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem. 1995 Mar 17;270(11):6235–6242. doi: 10.1074/jbc.270.11.6235. [DOI] [PubMed] [Google Scholar]
  41. Ramu A., Glaubiger D., Weintraub H. Differences in lipid composition of doxorubicin-sensitive and -resistant P388 cells. Cancer Treat Rep. 1984 Apr;68(4):637–641. [PubMed] [Google Scholar]
  42. Reddy M. M., Quinton P. M., Haws C., Wine J. J., Grygorczyk R., Tabcharani J. A., Hanrahan J. W., Gunderson K. L., Kopito R. R. Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science. 1996 Mar 29;271(5257):1876–1879. doi: 10.1126/science.271.5257.1876. [DOI] [PubMed] [Google Scholar]
  43. Roepe P. D. Analysis of the steady-state and initial rate of doxorubicin efflux from a series of multidrug-resistant cells expressing different levels of P-glycoprotein. Biochemistry. 1992 Dec 22;31(50):12555–12564. doi: 10.1021/bi00165a003. [DOI] [PubMed] [Google Scholar]
  44. Roepe P. D. The role of the MDR protein in altered drug translocation across tumor cell membranes. Biochim Biophys Acta. 1995 Dec 20;1241(3):385–405. doi: 10.1016/0304-4157(95)00013-5. [DOI] [PubMed] [Google Scholar]
  45. Roepe P. D., Wei L. Y., Cruz J., Carlson D. Lower electrical membrane potential and altered pHi homeostasis in multidrug-resistant (MDR) cells: further characterization of a series of MDR cell lines expressing different levels of P-glycoprotein. Biochemistry. 1993 Oct 19;32(41):11042–11056. doi: 10.1021/bi00092a014. [DOI] [PubMed] [Google Scholar]
  46. Roepe P. D., Weisburg J. H., Luz J. G., Hoffman M. M., Wei L. Y. Novel Cl(-)-dependent intracellular pH regulation in murine MDR 1 transfectants and potential implications. Biochemistry. 1994 Sep 13;33(36):11008–11015. doi: 10.1021/bi00202a021. [DOI] [PubMed] [Google Scholar]
  47. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  48. Ruetz S., Gros P. Functional expression of P-glycoproteins in secretory vesicles. J Biol Chem. 1994 Apr 22;269(16):12277–12284. [PubMed] [Google Scholar]
  49. Schlemmer S. R., Sirotnak F. M. Functional studies of P-glycoprotein in inside-out plasma membrane vesicles derived from murine erythroleukemia cells overexpressing MDR 3. Properties and kinetics of the interaction of vinblastine with P-glycoprotein and evidence for its active mediated transport. J Biol Chem. 1994 Dec 9;269(49):31059–31066. [PubMed] [Google Scholar]
  50. Schwiebert E. M., Egan M. E., Hwang T. H., Fulmer S. B., Allen S. S., Cutting G. R., Guggino W. B. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell. 1995 Jun 30;81(7):1063–1073. doi: 10.1016/s0092-8674(05)80011-x. [DOI] [PubMed] [Google Scholar]
  51. Sehested M., Skovsgaard T., van Deurs B., Winther-Nielsen H. Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil. Br J Cancer. 1987 Dec;56(6):747–751. doi: 10.1038/bjc.1987.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shapiro A. B., Ling V. Reconstitution of drug transport by purified P-glycoprotein. J Biol Chem. 1995 Jul 7;270(27):16167–16175. doi: 10.1074/jbc.270.27.16167. [DOI] [PubMed] [Google Scholar]
  53. Sharom F. J., Yu X., Doige C. A. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem. 1993 Nov 15;268(32):24197–24202. [PubMed] [Google Scholar]
  54. Simon S., Roy D., Schindler M. Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1128–1132. doi: 10.1073/pnas.91.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
  56. Stein W. D., Cardarelli C., Pastan I., Gottesman M. M. Kinetic evidence suggesting that the multidrug transporter differentially handles influx and efflux of its substrates. Mol Pharmacol. 1994 Apr;45(4):763–772. [PubMed] [Google Scholar]
  57. Stutts M. J., Gabriel S. E., Olsen J. C., Gatzy J. T., O'Connell T. L., Price E. M., Boucher R. C. Functional consequences of heterologous expression of the cystic fibrosis transmembrane conductance regulator in fibroblasts. J Biol Chem. 1993 Sep 25;268(27):20653–20658. [PubMed] [Google Scholar]
  58. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  59. Valverde M. A., Díaz M., Sepúlveda F. V., Gill D. R., Hyde S. C., Higgins C. F. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature. 1992 Feb 27;355(6363):830–833. doi: 10.1038/355830a0. [DOI] [PubMed] [Google Scholar]
  60. Vayuvegula B., Slater L., Meador J., Gupta S. Correction of altered plasma membrane potentials. A possible mechanism of cyclosporin A and verapamil reversal of pleiotropic drug resistance in neoplasia. Cancer Chemother Pharmacol. 1988;22(2):163–168. doi: 10.1007/BF00257315. [DOI] [PubMed] [Google Scholar]
  61. Wadkins R. M., Houghton P. J. Kinetics of transport of dialkyloxacarbocyanines in multidrug-resistant cell lines overexpressing P-glycoprotein: interrelationship of dye alkyl chain length, cellular flux, and drug resistance. Biochemistry. 1995 Mar 21;34(11):3858–3872. doi: 10.1021/bi00011a044. [DOI] [PubMed] [Google Scholar]
  62. Wadkins R. M., Houghton P. J. The role of drug-lipid interactions in the biological activity of modulators of multi-drug resistance. Biochim Biophys Acta. 1993 Dec 12;1153(2):225–236. doi: 10.1016/0005-2736(93)90409-s. [DOI] [PubMed] [Google Scholar]
  63. Wei L. Y., Roepe P. D. Low external pH and osmotic shock increase the expression of human MDR protein. Biochemistry. 1994 Jun 14;33(23):7229–7238. doi: 10.1021/bi00189a027. [DOI] [PubMed] [Google Scholar]
  64. Wei L. Y., Stutts M. J., Hoffman M. M., Roepe P. D. Overexpression of the cystic fibrosis transmembrane conductance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype. Biophys J. 1995 Sep;69(3):883–895. doi: 10.1016/S0006-3495(95)79962-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. al-Awqati Q. Regulation of ion channels by ABC transporters that secrete ATP. Science. 1995 Aug 11;269(5225):805–806. doi: 10.1126/science.7543697. [DOI] [PubMed] [Google Scholar]
  66. el-Moatassim C., Dornand J., Mani J. C. Extracellular ATP and cell signalling. Biochim Biophys Acta. 1992 Feb 19;1134(1):31–45. doi: 10.1016/0167-4889(92)90025-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES