Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Oct 1;108(4):333–340. doi: 10.1085/jgp.108.4.333

Equivalence of background and bleaching desensitization in isolated rod photoreceptors of the larval tiger salamander

PMCID: PMC2229334  PMID: 8894981

Abstract

Psychophysical experiments have shown an equivalence between sensitivity reduction by background light and by bleaches for the human scotopic system. We have compared the effects of backgrounds and bleaches on the light-sensitive membrane-current responses of isolated rod photoreceptors from the salamander Ambystoma tigrinum. The quantum catch loss was factored out from the desensitization due to bleaching to give the fraction of "extra" desensitization due to adaptation. For backgrounds, desensitization is well described by the Weber/Fechner equation. The extra desensitization after bleaches can also be described by the Weber/Fechner equation, if an "equivalent" background produced by bleaching is made linearly proportional to the fraction of pigment bleached. A background which produces an extra desensitization of a factor of two is equivalent to a fractional bleach of approximately 6%. Equivalent background and bleaching desensitizations were associated with similar reductions in circulating current. There is a linear relation between log flash sensitivity and decrease in circulating current. Equivalent background and bleaching desensitizations were associated with similar increases in cGMP phosphodiesterase and guanylate cyclase activity. These were inferred from membrane current changes after steps into lithium or IBMX solutions. There were also similar reductions in the integration times of dim flash responses for equivalent desensitizations produced by backgrounds and bleaches. These results suggest that the equivalence between background and bleaching found psychophysically may arise at the very earliest stages of visual processing and that these two processes of desensitization have similar underlying mechanisms.

Full Text

The Full Text of this article is available as a PDF (774.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma K., Azuma M., Sickel W. Regeneration of rhodopsin in frog rod outer segments. J Physiol. 1977 Oct;271(3):747–759. doi: 10.1113/jphysiol.1977.sp012024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor D. A., Hodgkin A. L. Changes in time scale and sensitivity in turtle photoreceptors. J Physiol. 1974 Nov;242(3):729–758. doi: 10.1113/jphysiol.1974.sp010732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cobbs W. H. Light and dark active phosphodiesterase regulation in salamander rods. J Gen Physiol. 1991 Sep;98(3):575–614. doi: 10.1085/jgp.98.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cocozza J. D., Ostroy S. E. Factors affecting the regeneration of rhodopsin in the isolated amphibian retina. Vision Res. 1987;27(7):1085–1091. doi: 10.1016/0042-6989(87)90023-x. [DOI] [PubMed] [Google Scholar]
  5. Cornwall M. C., Fain G. L. Bleached pigment activates transduction in isolated rods of the salamander retina. J Physiol. 1994 Oct 15;480(Pt 2):261–279. doi: 10.1113/jphysiol.1994.sp020358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornwall M. C., Fein A., MacNichol E. F., Jr Cellular mechanisms that underlie bleaching and background adaptation. J Gen Physiol. 1990 Aug;96(2):345–372. doi: 10.1085/jgp.96.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cornwall M. C., Matthews H. R., Crouch R. K., Fain G. L. Bleached pigment activates transduction in salamander cones. J Gen Physiol. 1995 Sep;106(3):543–557. doi: 10.1085/jgp.106.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DOWLING J. E. Chemistry of visual adaptation in the rat. Nature. 1960 Oct 8;188:114–118. doi: 10.1038/188114a0. [DOI] [PubMed] [Google Scholar]
  9. Fain G. L., Matthews H. R. Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Trends Neurosci. 1990 Sep;13(9):378–384. doi: 10.1016/0166-2236(90)90023-4. [DOI] [PubMed] [Google Scholar]
  10. Gupta B. D., Williams T. P. Lateral diffusion of visual pigments in toad (Bufo marinus) rods and in catfish (Ictalurus punctatus) cones. J Physiol. 1990 Nov;430:483–496. doi: 10.1113/jphysiol.1990.sp018303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hodgkin A. L., Nunn B. J. Control of light-sensitive current in salamander rods. J Physiol. 1988 Sep;403:439–471. doi: 10.1113/jphysiol.1988.sp017258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsu Y. T., Molday R. S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature. 1993 Jan 7;361(6407):76–79. doi: 10.1038/361076a0. [DOI] [PubMed] [Google Scholar]
  13. Jones G. J., Fein A., MacNichol E. F., Jr, Cornwall M. C. Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation. J Gen Physiol. 1993 Sep;102(3):483–502. doi: 10.1085/jgp.102.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones G. J. Light adaptation and the rising phase of the flash photocurrent of salamander retinal rods. J Physiol. 1995 Sep 1;487(Pt 2):441–451. doi: 10.1113/jphysiol.1995.sp020891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawamura S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature. 1993 Apr 29;362(6423):855–857. doi: 10.1038/362855a0. [DOI] [PubMed] [Google Scholar]
  16. Koch K. W., Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature. 1988 Jul 7;334(6177):64–66. doi: 10.1038/334064a0. [DOI] [PubMed] [Google Scholar]
  17. Koutalos Y., Nakatani K., Yau K. W. The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol. 1995 Nov;106(5):891–921. doi: 10.1085/jgp.106.5.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lagnado L., Baylor D. A. Calcium controls light-triggered formation of catalytically active rhodopsin. Nature. 1994 Jan 20;367(6460):273–277. doi: 10.1038/367273a0. [DOI] [PubMed] [Google Scholar]
  19. Lamb T. D. The involvement of rod photoreceptors in dark adaptation. Vision Res. 1981;21(12):1773–1782. doi: 10.1016/0042-6989(81)90211-x. [DOI] [PubMed] [Google Scholar]
  20. Leibovic K. N., Dowling J. E., Kim Y. Y. Background and bleaching equivalence in steady-state adaptation of vertebrate rods. J Neurosci. 1987 Apr;7(4):1056–1063. doi: 10.1523/JNEUROSCI.07-04-01056.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leibrock C. S., Reuter T., Lamb T. D. Dark adaptation of toad rod photoreceptors following small bleaches. Vision Res. 1994 Nov;34(21):2787–2800. doi: 10.1016/0042-6989(94)90048-5. [DOI] [PubMed] [Google Scholar]
  22. Makino C. L., Taylor W. R., Baylor D. A. Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones. J Physiol. 1991 Oct;442:761–780. doi: 10.1113/jphysiol.1991.sp018818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matthews H. R. Effects of lowered cytoplasmic calcium concentration and light on the responses of salamander rod photoreceptors. J Physiol. 1995 Apr 15;484(Pt 2):267–286. doi: 10.1113/jphysiol.1995.sp020664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matthews H. R., Fain G. L., Cornwall M. C. Role of cytoplasmic calcium concentration in the bleaching adaptation of salamander cone photoreceptors. J Physiol. 1996 Jan 15;490(Pt 2):293–303. doi: 10.1113/jphysiol.1996.sp021144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matthews H. R., Murphy R. L., Fain G. L., Lamb T. D. Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature. 1988 Jul 7;334(6177):67–69. doi: 10.1038/334067a0. [DOI] [PubMed] [Google Scholar]
  26. McNaughton P. A. Light response of vertebrate photoreceptors. Physiol Rev. 1990 Jul;70(3):847–883. doi: 10.1152/physrev.1990.70.3.847. [DOI] [PubMed] [Google Scholar]
  27. Pepperberg D. R., Jin J., Jones G. J. Modulation of transduction gain in light adaptation of retinal rods. Vis Neurosci. 1994 Jan-Feb;11(1):53–62. doi: 10.1017/s095252380001110x. [DOI] [PubMed] [Google Scholar]
  28. Pepperberg D. R. Rhodopsin and visual adaptation: analysis of photoreceptor thresholds in the isolated skate retina. Vision Res. 1984;24(4):357–366. doi: 10.1016/0042-6989(84)90061-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES