Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1956 Jul 25;2(4):467–474. doi: 10.1083/jcb.2.4.467

THE ELECTRON MICROSCOPY OF THE CHOROID PLEXUS

David S Maxwell 1, Daniel C Pease 1
PMCID: PMC2229709  PMID: 13357511

Abstract

1. The choroid plexus of the rat has been studied in detail by electron microscopy. Samples from the frog, rabbit, and cat have also been examined without noting significant differences. 2. The surface of the ependymal epithelium is covered by pedicels of variable size. There is reason for thinking of these structures as labile. They may actually pinch off and contribute to the secretory product. In any case, the surface area is vastly increased by their presence. Polypoid border seems an apt term to apply to this type of surface. 3. There is also a great expansion of the basal surface of ependymal cells. In the vicinity of cell junctions this surface is deeply infolded, and continuous with elaborate interdigitations of the lateral intercellular surfaces. Analogous infolding of the basal cell surface is known to exist in other epithelia also noted for their water transport (kidney tubules, salivary gland, and ciliary body). 4. Pretreatment of rats with diamox, an agent known to block cerebro-spinal fluid production, did not produce an important morphological change in the features of the ependyma, or any other part of the choroid plexus. 5. Capillaries of the choroid plexus have a very attenuated endothelium. This is seen to be fenestrated. It is thought this probably represents the condition in life, and is not simply a fixation artefact. 6. Pial cells tend to interpose sheets of cytoplasm between the capillaries and ependyma. The sheets are not continuous, however, and so would not constitute a serious diffusion barrier. These cells belong to the reticuloendothelial system, and undergo shape changes, and probably increase in number, when the system is stimulated by the repeated injection of trypan blue.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DEMPSEY E. W., WISLOCKI G. B. An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J Biophys Biochem Cytol. 1955 May 25;1(3):245–256. doi: 10.1083/jcb.1.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. PALADE G. E. Studies on the endoplasmic reticulum. II. Simple dispositions in cells in situ. J Biophys Biochem Cytol. 1955 Nov 25;1(6):567–582. doi: 10.1083/jcb.1.6.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. PEASE D. C. Electron microscopy of the tubular cells of the kidney cortex. Anat Rec. 1955 Apr;121(4):723–743. doi: 10.1002/ar.1091210403. [DOI] [PubMed] [Google Scholar]
  6. PEASE D. C. Electron microscopy of the vascular bed of the kidney cortex. Anat Rec. 1955 Apr;121(4):701–721. doi: 10.1002/ar.1091210402. [DOI] [PubMed] [Google Scholar]
  7. PEASE D. C. Fine structures of the kidney seen by electron microscopy. J Histochem Cytochem. 1955 Jul;3(4):295–308. doi: 10.1177/3.4.295. [DOI] [PubMed] [Google Scholar]
  8. RODRIGUEZ L. A. Experiments on the histologic locus of the hemato-encephalic barrier. J Comp Neurol. 1955 Feb;102(1):27–45. doi: 10.1002/cne.901020103. [DOI] [PubMed] [Google Scholar]
  9. TSCHIRGI R. D., FROST R. W., TAYLOR J. L. Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibitor, 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide (diamox). Proc Soc Exp Biol Med. 1954 Nov;87(2):373–376. doi: 10.3181/00379727-87-21386. [DOI] [PubMed] [Google Scholar]
  10. VAN BREEMEN V. L., CLEMENTE C. D. Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope. J Biophys Biochem Cytol. 1955 Mar;1(2):161–166. doi: 10.1083/jcb.1.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES