Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1956 Jul 25;2(4):131–142. doi: 10.1083/jcb.2.4.131

THE FINE STRUCTURE OF STRIATED MUSCLE

A COMPARISON OF INSECT FLIGHT MUSCLE WITH VERTEBRATE AND INVERTEBRATE SKELETAL MUSCLE

A J Hodge 1
PMCID: PMC2229725  PMID: 13357534

Abstract

The available evidence from phase contrast, polarization optical, and electron microscopic studies on vertebrate skeletal muscle, insect skeletal muscle, and dipteran flight muscle is interpreted as favoring the following general structure of striated muscle. A continuous array of filaments (actin) runs through all bands of the sarcomere. These are linked by an axially periodic system of transverse filamentous bridges. Myosin (and probably other substances) are localized in the A bands. The system of transverse bridges compensates the birefringence of actin and is thus responsible for the isotropy of the I band. Myosin is responsible for the birefringence of the A bands. On strong contraction, A band material migrates to the Z bands to form contraction bands. It is not yet certain whether this migration involves myosin or another A band component.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALOISI M., ASCENZI A., BONETTI E. The fine structure of striated myofibrils. J Pathol Bacteriol. 1954 Apr;67(2):475–483. doi: 10.1002/path.1700670222. [DOI] [PubMed] [Google Scholar]
  2. ASHLEY C. A., PORTER K. R., PHILPOTT D. E., HASS G. M. Observations by electron microscopy on contraction of skeletal myofibrils induced with adenosinetriphosphate. J Exp Med. 1951 Jul 1;94(1):9–20. doi: 10.1084/jem.94.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARLSEN F., KNAPPEIS G. G. The anisotropic and isotropic bands of skeletal muscle in light- and electron microscopy. Exp Cell Res. 1955 Apr;8(2):329–335. doi: 10.1016/0014-4827(55)90144-0. [DOI] [PubMed] [Google Scholar]
  4. DRAPER M. H., HODGE A. J. Sub-microscopic localization of minerals in skeletal muscle by internal micro-incineration within the electron microscope. Nature. 1949 Apr 9;163(4145):576–576. doi: 10.1038/163576a0. [DOI] [PubMed] [Google Scholar]
  5. FINCK H., HOLTZER H., MARSHALL J. M., Jr An immunochemical study of the distribution of myosin in glycerol extracted muscle. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):175–178. doi: 10.1083/jcb.2.4.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HANSON J., HUXLEY H. E. Structural basis of the cross-striations in muscle. Nature. 1953 Sep 19;172(4377):530–532. doi: 10.1038/172530b0. [DOI] [PubMed] [Google Scholar]
  7. HARMAN J. W., OSBORNE U. H. The relationship between cytochondria and myofibrils in pigeon skeletal muscle. J Exp Med. 1953 Jul;98(1):81–98. doi: 10.1084/jem.98.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGE A. J., HUXLEY H. E., SPIRO D. Electron microscope studies on ultrathin sections of muscle. J Exp Med. 1954 Feb;99(2):201–206. doi: 10.1084/jem.99.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUXLEY H. E. Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta. 1953 Nov;12(3):387–394. doi: 10.1016/0006-3002(53)90156-5. [DOI] [PubMed] [Google Scholar]
  10. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  11. Hodge A. J. Studies on the structure of muscle. III. Phase contrast and electron microscopy of dipteran flight muscle. J Biophys Biochem Cytol. 1955 Jul 25;1(4):361–380. doi: 10.1083/jcb.1.4.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KISCH B. Studies in comparative electronmicroscopy of the heart. 1. Pipefish and bat. Exp Med Surg. 1954;12(3):335–360. [PubMed] [Google Scholar]
  13. MORGAN C., ROZSA G. Macromolecular arrangement within muscle. Science. 1950 Feb 24;111(2878):201–201. doi: 10.1126/science.111.2878.201. [DOI] [PubMed] [Google Scholar]
  14. PHILPOTT D. E., SZENT-GYORGYI A. G. The structure of light-meromyosin: an electron microscopic study. Biochim Biophys Acta. 1954 Oct;15(2):165–173. doi: 10.1016/0006-3002(54)90056-6. [DOI] [PubMed] [Google Scholar]
  15. PHILPOTT D. E., SZENT-GYORGYI A. Observations on the electron microscopic structure of insect muscle. Biochim Biophys Acta. 1955 Oct;18(2):177–182. doi: 10.1016/0006-3002(55)90053-6. [DOI] [PubMed] [Google Scholar]
  16. SZENT-GYORGYI A. G., MAZIA D., SZENT-GYORGYI A. On the nature of the cross-striation of body muscle. Biochim Biophys Acta. 1955 Mar;16(3):339–342. doi: 10.1016/0006-3002(55)90235-3. [DOI] [PubMed] [Google Scholar]
  17. WEINSTEIN H. J. An electron microscope study of cardiac muscle. Exp Cell Res. 1954 Aug;7(1):130–146. doi: 10.1016/0014-4827(54)90048-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES