Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Aug 1;6(1):77–84. doi: 10.1083/jcb.6.1.77

"Reticular" and "Areticular" Nissl Bodies in Sympathetic Neurons of a Lizard

Stuart W Smith 1
PMCID: PMC2229759  PMID: 13673051

Abstract

Sympathetic ganglia of the horned lizard, Phrynosoma cornutum, were fixed in OsO4 and imbedded in methacrylate. Thin sections were cut for electron microscopy. Some adjacent thick sections were cut for light microscopy and were stained in acidified, dilute thionine both before and after digestion by RNase. In the light microscope two types of Nissl bodies are found, both removable by RNase: (1) a deep, diffuse, indistinctly bounded, metachromatic variety, and (2) a superficial, dense, sharply delimited, orthochromatic sort. Electron microscopically, the former ("reticular" Nissl bodies) corresponds to the granulated endoplasmic reticular structure of Nissl material previously described by others, whereas the latter ("areticular" Nissl bodies) comprises compact masses of particles of varying internal density and devoid of elements of endoplasmic reticulum. The constituent particles of the areticular Nissl material are 4 to 8 x the diameter of single ribonucleoprotein granules of the reticular Nissl substance and seem, near zones of junction with the reticular type, to arise by clustering of such granules with subsequent partial dispersion of the substance of the granules into an added, less dense material. It is suggested that the observed orthochromasia of the areticular Nissl substance is due to accumulation of a large amount of protein bound to RNA and, further, that these Nissl bodies may represent storage depots of RNA and protein.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON E., VAN BREEMEN V. L. Electron microscopic observations on spinal ganglion cells of Rana pipiens after injection of malononitrile. J Biophys Biochem Cytol. 1958 Jan 25;4(1):83–86. doi: 10.1083/jcb.4.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTON A. A., CAUSEY G. Electron microscopic study of the superior cervical ganglion. J Anat. 1958 Jul;92(3):399–407. [PMC free article] [PubMed] [Google Scholar]
  3. BERGERON J. A., SINGER M. Metachromasy: an experimental and theoretical reevaluation. J Biophys Biochem Cytol. 1958 Jul 25;4(4):433–457. doi: 10.1083/jcb.4.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DALLAM R. D. Determination of protein and lipid lost during osmic acid fixation of tissues and cellular particulates. J Histochem Cytochem. 1957 Mar;5(2):178–181. doi: 10.1177/5.2.178. [DOI] [PubMed] [Google Scholar]
  5. DE ROBERTIS E. The nucleo-cytoplasmic relationship and the basophilic substance (ergastoplasm) of nerve cells; electron microscope observations. J Histochem Cytochem. 1954 Sep;2(5):341–345. doi: 10.1177/2.5.341. [DOI] [PubMed] [Google Scholar]
  6. HARTMANN J. F. Electron microscopy of mitochondria in the central nervous system. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):375–378. doi: 10.1083/jcb.2.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HESS A. The fine structure of young and old spinal ganglia. Anat Rec. 1955 Dec;123(4):399–423. doi: 10.1002/ar.1091230403. [DOI] [PubMed] [Google Scholar]
  8. HOAGLAND M. B., STEPHENSON M. L., SCOTT J. F., HECHT L. I., ZAMECNIK P. C. A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem. 1958 Mar;231(1):241–257. [PubMed] [Google Scholar]
  9. KRAMER H., WINDRUM G. M. The metachromatic staining reaction. J Histochem Cytochem. 1955 May;3(3):227–237. doi: 10.1177/3.3.227. [DOI] [PubMed] [Google Scholar]
  10. LARSEN B. Metachromasia inhibiting components in amyloid. J Histochem Cytochem. 1958 May;6(3):181–184. doi: 10.1177/6.3.181. [DOI] [PubMed] [Google Scholar]
  11. LUSE S. A. Electron microscopic observations of the central nervous system. J Biophys Biochem Cytol. 1956 Sep 25;2(5):531–542. doi: 10.1083/jcb.2.5.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McMASTER-KAYE R., TAYLOR J. H. Evidence for two metabolically distinct types of ribonucleic acid in chromatin and nucleoli. J Biophys Biochem Cytol. 1958 Jan 25;4(1):5–11. doi: 10.1083/jcb.4.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NIKLAS A., OEHLERT W. Autoradiographische Untersuchung der Grösse des Eiweissstoffwechsels verschiedener Organe, Gewebe und Zellarten. Beitr Pathol Anat. 1956;116(1):92–123. [PubMed] [Google Scholar]
  14. PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SCHUBERT M., HAMERMAN D. Metachromasia; chemical theory and histochemical use. J Histochem Cytochem. 1956 Mar;4(2):159–189. doi: 10.1177/4.2.159. [DOI] [PubMed] [Google Scholar]
  19. SCHULTZ R. L., MAYNARD E. A., PEASE D. C. Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Am J Anat. 1957 May;100(3):369–407. doi: 10.1002/aja.1001000305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES