Abstract
After incubation of pigeon pancreas slices with P32 and isolation of various fractions by differential centrifugation the deoxycholate extract of the microsome fraction was found to account for over half of the phospholipide P and over half of the P32 incorporated into the phospholipides. The remaining phospholipide P and P32 were fairly evenly distributed in the nuclei, zymogen granules, mitochondria, microsomal ribonucleoprotein particles, and the soluble fraction. When enzyme secretion was stimulated with acetylcholine about two-thirds of the increment in radioactivity in the total phospholipides was found in deoxycholate soluble components of the microsome fraction. The remainder of the increment was distributed in the other fractions. This indicates that the cellular component in which the increase in phospholipide turnover occurs on stimulation of secretion is a membranous structure. Evidence is presented which indicates that the increment in radioactivity in the non-microsomal fractions on stimulation of secretion is due to contamination of these fractions with fragments of the stimulated membranous structure. The distribution of P32 radioactivity in each of the chromatographically separated phospholipides in the various fractions from unstimulated tissue paralleled the distribution of radioactivity in the total phospholipide fraction, indicating that individual phospholipides are not concentrated in different fractions but are associated together in the membranous structures of the microsome fraction. The major proportion of the stimulation of the turnover of the individual phospholipides also occurred in the microsome fraction. The distribution of radioactivity from glycerol-1-C14 in the total phospholipides and in the individual phospholipides in the various fractions was similar to the distribution of P32. In the microsome fraction acetylcholine stimulated the incorporation of glycerol-1-C14 in each phospholipide which showed a stimulation of P32 incorporation. The significance of the turnover of phosphatides in microsomal membranes in relation to the mechanism of secretion is discussed.
Full Text
The Full Text of this article is available as a PDF (628.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DALTON A. J. Electron micrography of epithelial cells of the gastro-intestinal tract and pancreas. Am J Anat. 1951 Jul;89(1):109–133. doi: 10.1002/aja.1000890105. [DOI] [PubMed] [Google Scholar]
- DE ALMEIDA A. L., GROSSMAN M. I. Experimental production of pancreatitis with ethionine. Gastroenterology. 1952 Apr;20(4):554–577. [PubMed] [Google Scholar]
- GROSSMAN M. I., LIN T. M. Dose response relationship of pancreatic enzyme stimulants: pancreozymin and methacholine. Am J Physiol. 1956 Jul;186(1):52–56. doi: 10.1152/ajplegacy.1956.186.1.52. [DOI] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Acetylcholine and the exchange of phosphate in phosphatidic acid in brain microsomes. J Biol Chem. 1958 Oct;233(4):822–826. [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Phosphoinositides and protein secretion in pancreas slices. J Biol Chem. 1958 Oct;233(4):805–810. [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Studies of pancreatic tissue in vitro. Gastroenterology. 1959 Mar;36(3):368–376. [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion. J Physiol. 1956 May 28;132(2):442–453. doi: 10.1113/jphysiol.1956.sp005536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. The mechanism of phosphate exchange in phosphatidic acid in response to acetylcholine. J Biol Chem. 1959 Jun;234(6):1387–1390. [PubMed] [Google Scholar]
- HOKIN L. E., SHERWIN A. L. Protein secretion and phosphate turnover in the phospholipids in salivary glands in vitro. J Physiol. 1957 Jan 23;135(1):18–29. doi: 10.1113/jphysiol.1957.sp005690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOKIN M. R., BENFEY B. G., HOKIN L. E. Phospholipides and adrenaline secretion in guinea pig adrenal medulla. J Biol Chem. 1958 Oct;233(4):814–817. [PubMed] [Google Scholar]
- HOKIN M. R., HOKIN L. E. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem. 1953 Aug;203(2):967–977. [PubMed] [Google Scholar]
- HOKIN M. R., HOKIN L. E., SAFFRAN M., SCHALLY A. V., ZIMMERMANN B. U. Phospholipides and the secretion of adrenocorticotropin and of corticosteroids. J Biol Chem. 1958 Oct;233(4):811–813. [PubMed] [Google Scholar]
- KALSER M. H., GROSSMAN M. I. Pancreatic secretion in dogs with ethionine-induced pancreatitis. Gastroenterology. 1954 Feb;26(2):189–197. [PubMed] [Google Scholar]
- PALADE G. E. Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol. 1956 Jul 25;2(4):417–422. doi: 10.1083/jcb.2.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R. Electron microscopy of basophilic components of cytoplasm. J Histochem Cytochem. 1954 Sep;2(5):346–375. doi: 10.1177/2.5.346. [DOI] [PubMed] [Google Scholar]
- SIEKEVITZ P., PALADE G. E. A cyto-chemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J Biophys Biochem Cytol. 1958 Sep 25;4(5):557–566. doi: 10.1083/jcb.4.5.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. I. Isolation and enzymatic activities of cell fractions. J Biophys Biochem Cytol. 1958 Mar 25;4(2):203–218. doi: 10.1083/jcb.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. II. Functional variations in the enzymatic activity of microsomes. J Biophys Biochem Cytol. 1958 May 25;4(3):309–318. doi: 10.1083/jcb.4.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WETZSTEIN R. Elektronenmikroskopische Untersuchungen am Nebennierenmark von Maus, Meerschweinchen und Katze. Z Zellforsch Mikrosk Anat. 1957;46(5):517–576. [PubMed] [Google Scholar]
- Weiss S. B., Acs G., Lipmann F. AMINO ACID INCORPORATION IN PIGEON PANCREAS FRACTIONS. Proc Natl Acad Sci U S A. 1958 Feb;44(2):189–196. doi: 10.1073/pnas.44.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]