Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Oct 1;6(2):241–252. doi: 10.1083/jcb.6.2.241

The Structure of the Mitochondrial Membrane: Inferences from Permeability Properties

Henry Tedeschi 1
PMCID: PMC2229787  PMID: 13837259

Abstract

Mitochondria possess a semipermeable membrane with properties similar to the cell membrane. Despite the presence of a limiting membrane, mitochondria swell approximately 4 to 5 times their original volume without lysis or loss of internal solute. For this reason, it has been argued that the membrane might be convoluted. The present kinetic study of the permeability of isolated mitochondria was undertaken to clarify this question. A photometric method described previously was used. In the case of highly lipid soluble penetrants, the results suggest that neither the permeability nor the surface area available for penetration varies significantly during considerable swelling. These results may be interpreted to mean that the mitochondrial membrane is convoluted. For highly polar compounds, the permeability of the membrane also remains unchanged during swelling, but the surface area available to penetration increases. These results may be interpreted to mean that in this latter case, the surface of the convolutions becomes available only after they are unfolded by swelling. The simplest model that can explain the permeability properties of this membrane consists of a bimolecular lipid layer where the inner monomolecular layer is convoluted.

Full Text

The Full Text of this article is available as a PDF (685.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAHR G. F. Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains. III. Exp Cell Res. 1954 Nov;7(2):457–479. doi: 10.1016/s0014-4827(54)80091-7. [DOI] [PubMed] [Google Scholar]
  2. FINEAN J. B. The effects of osmium tetroxide fixation on the structure of myelin in sciatic nerve. Exp Cell Res. 1954 May;6(2):283–292. doi: 10.1016/0014-4827(54)90175-5. [DOI] [PubMed] [Google Scholar]
  3. FREEMAN J. A. The ultrastructure of the double membrane systems of micochondria. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):353–354. doi: 10.1083/jcb.2.4.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KRETCHMER N., BARNUM C. P. Partition of cytoplasmic lipides. Arch Biochem Biophys. 1951 Mar;31(1):141–147. doi: 10.1016/0003-9861(51)90193-2. [DOI] [PubMed] [Google Scholar]
  5. LEVER J. D., CHAPPELL J. B. Mitochondria isolated from rat brown adipose tissue and liver. J Biophys Biochem Cytol. 1958 May 25;4(3):287–290. doi: 10.1083/jcb.4.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOW F. N. Mitochondrial structure. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):337–340. doi: 10.1083/jcb.2.4.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PALADE G. E. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953 Jul;1(4):188–211. doi: 10.1177/1.4.188. [DOI] [PubMed] [Google Scholar]
  8. REVEL J. P., ITO S., FAWCETT D. W. Electron micrographs of myelin figures of phospholipide simulating intracellular membranes. J Biophys Biochem Cytol. 1958 Jul 25;4(4):495–498. doi: 10.1083/jcb.4.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ROBERTSON J. D. New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1043–1048. doi: 10.1083/jcb.3.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ROBERTSON J. D. Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J Biophys Biochem Cytol. 1958 Jul 25;4(4):349–364. doi: 10.1083/jcb.4.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. I. Isolation and enzymatic activities of cell fractions. J Biophys Biochem Cytol. 1958 Mar 25;4(2):203–218. doi: 10.1083/jcb.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SIEKEVITZ P., WATSON M. L. Cytochemical studies of mitochondria. I. The separation and identification of a membrane fraction from isolated mitochondria. J Biophys Biochem Cytol. 1956 Nov 25;2(6):639–652. doi: 10.1083/jcb.2.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. TEDESCHI H., HARRIS D. L. Some observations on the photometric estimation of mitochondrial volume. Biochim Biophys Acta. 1958 May;28(2):392–402. doi: 10.1016/0006-3002(58)90487-6. [DOI] [PubMed] [Google Scholar]
  14. TEDESCHI H., HARRIS D. L. The osmotic behavior and permeability to non-electrolytes of mitochondria. Arch Biochem Biophys. 1955 Sep;58(1):52–67. doi: 10.1016/0003-9861(55)90092-8. [DOI] [PubMed] [Google Scholar]
  15. WITTER R. F., WATSON M. L., COTTONE M. A. Morphology and ATP-ase of isolated mitochondria. J Biophys Biochem Cytol. 1955 Mar;1(2):127–138. doi: 10.1083/jcb.1.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES