Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1995 Mar;1(3):254–266.

An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality.

M Bianchi 1, P Ulrich 1, O Bloom 1, M Meistrell 3rd 1, G A Zimmerman 1, H Schmidtmayerova 1, M Bukrinsky 1, T Donnelley 1, R Bucala 1, B Sherry 1, et al.
PMCID: PMC2229913  PMID: 8529104

Abstract

BACKGROUND: Nitric oxide (NO), a small effector molecule produced enzymatically from L-arginine by nitric oxide synthase (NOS), is a mediator not only of important homeostatic mechanisms (e.g., blood vessel tone and tissue perfusion), but also of key aspects of local and systemic inflammatory responses. Previous efforts to develop inhibitors of NOS to protect against NO-mediated tissue damage in endotoxin shock have been unsuccessful, largely because such competitive NOS antagonists interfere with critical vasoregulatory NO production in blood vessels and decrease survival in endotoxemic animals. Accordingly, we sought to develop a pharmaceutical approach to selectively inhibit NO production in macrophages while sparing NO responses in blood vessels. MATERIALS AND METHODS: The process of cytokine-inducible L-arginine transport and NO production were studied in the murine macrophage-like cell line (RAW 264.7). A series of multivalent guanylhydrazones were synthesized to inhibit cytokine-inducible L-arginine transport. One such compound (CNI-1493) was studied further in animal models of endothelial-derived relaxing factor (EDRF) activity, carrageenan inflammation, and lethal lipopolysaccharide (LPS) challenge. RESULTS: Upon activation with cytokines, macrophages increase transport of L-arginine to support the production of NO by NOS. Since endothelial cells do not require this additional arginine transport to produce NO, we reasoned that a competitive inhibitor of cytokine-inducible L-arginine transport would not inhibit EDRF activity in blood vessels, and thus might be effectively employed against endotoxic shock. CNI-1493, a tetravalent guanylhydrazone, proved to be a selective inhibitor of cytokine-inducible arginine transport and NO production, but did not inhibit EDRF activity. In mice, CNI-1493 prevented the development of carrageenan-induced footpad inflammation, and conferred protection against lethal LPS challenge. CONCLUSIONS: A selective inhibitor of cytokine-inducible L-arginine transport that does not inhibit vascular EDRF responses is effective against endotoxin lethality and significantly reduces inflammatory responses.

Full text

PDF
254

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Caldwell M. D., Henry W. L., Jr, Mills C. D. Regulation of macrophage functions by L-arginine. J Exp Med. 1989 Mar 1;169(3):1021–1029. doi: 10.1084/jem.169.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baydoun A. R., Bogle R. G., Pearson J. D., Mann G. E. Arginine uptake and metabolism in cultured murine macrophages. Agents Actions. 1993;38(Spec No):C127–C129. doi: 10.1007/BF01991160. [DOI] [PubMed] [Google Scholar]
  3. Baydoun A. R., Bogle R. G., Pearson J. D., Mann G. E. Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine. Br J Pharmacol. 1994 Jun;112(2):487–492. doi: 10.1111/j.1476-5381.1994.tb13099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billiar T. R., Curran R. D., Harbrecht B. G., Stuehr D. J., Demetris A. J., Simmons R. L. Modulation of nitrogen oxide synthesis in vivo: NG-monomethyl-L-arginine inhibits endotoxin-induced nitrate/nitrate biosynthesis while promoting hepatic damage. J Leukoc Biol. 1990 Dec;48(6):565–569. doi: 10.1002/jlb.48.6.565. [DOI] [PubMed] [Google Scholar]
  5. Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  7. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  8. Closs E. I., Lyons C. R., Kelly C., Cunningham J. M. Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of a domain that determines the transport properties of the MCAT proteins. J Biol Chem. 1993 Oct 5;268(28):20796–20800. [PubMed] [Google Scholar]
  9. Cobb J. P., Cunnion R. E., Danner R. L. Nitric oxide as a target for therapy in septic shock. Crit Care Med. 1993 Sep;21(9):1261–1263. doi: 10.1097/00003246-199309000-00003. [DOI] [PubMed] [Google Scholar]
  10. Cobb J. P., Natanson C., Hoffman W. D., Lodato R. F., Banks S., Koev C. A., Solomon M. A., Elin R. J., Hosseini J. M., Danner R. L. N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med. 1992 Oct 1;176(4):1175–1182. doi: 10.1084/jem.176.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  12. Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Granger D. L., Taintor R. R., Cook J. L., Hibbs J. B., Jr Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J Clin Invest. 1980 Feb;65(2):357–370. doi: 10.1172/JCI109679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hasan K., Heesen B. J., Corbett J. A., McDaniel M. L., Chang K., Allison W., Wolffenbuttel B. H., Williamson J. R., Tilton R. G. Inhibition of nitric oxide formation by guanidines. Eur J Pharmacol. 1993 Nov 2;249(1):101–106. doi: 10.1016/0014-2999(93)90667-7. [DOI] [PubMed] [Google Scholar]
  16. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  18. Hrabák A., Idei M., Temesi A. Arginine supply for nitric oxide synthesis and arginase is mainly exogenous in elicited murine and rat macrophages. Life Sci. 1994;55(10):797–805. doi: 10.1016/0024-3205(94)00563-x. [DOI] [PubMed] [Google Scholar]
  19. Kilbourn R. G., Gross S. S., Jubran A., Adams J., Griffith O. W., Levi R., Lodato R. F. NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A. 1990 May;87(9):3629–3632. doi: 10.1073/pnas.87.9.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacAllister R. J., Whitley G. S., Vallance P. Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int. 1994 Mar;45(3):737–742. doi: 10.1038/ki.1994.98. [DOI] [PubMed] [Google Scholar]
  21. McCartney-Francis N., Allen J. B., Mizel D. E., Albina J. E., Xie Q. W., Nathan C. F., Wahl S. M. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1993 Aug 1;178(2):749–754. doi: 10.1084/jem.178.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mills C. D., Shearer J., Evans R., Caldwell M. D. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992 Oct 15;149(8):2709–2714. [PubMed] [Google Scholar]
  23. Minnard E. A., Shou J., Naama H., Cech A., Gallagher H., Daly J. M. Inhibition of nitric oxide synthesis is detrimental during endotoxemia. Arch Surg. 1994 Feb;129(2):142–148. doi: 10.1001/archsurg.1994.01420260038004. [DOI] [PubMed] [Google Scholar]
  24. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  25. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  26. Nava E., Palmer R. M., Moncada S. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet. 1991 Dec 21;338(8782-8783):1555–1557. doi: 10.1016/0140-6736(91)92375-c. [DOI] [PubMed] [Google Scholar]
  27. Nussler A. K., Billiar T. R., Liu Z. Z., Morris S. M., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed] [Google Scholar]
  28. Nussler A. K., Billiar T. R., Liu Z. Z., Morris S. M., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed] [Google Scholar]
  29. Otterness I. G., Moore P. F. Carrageenan foot edema test. Methods Enzymol. 1988;162:320–327. doi: 10.1016/0076-6879(88)62086-6. [DOI] [PubMed] [Google Scholar]
  30. Sato H., Fujiwara M., Bannai S. Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages. J Leukoc Biol. 1992 Aug;52(2):161–164. doi: 10.1002/jlb.52.2.161. [DOI] [PubMed] [Google Scholar]
  31. Sessa W. C., Hecker M., Mitchell J. A., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8607–8611. doi: 10.1073/pnas.87.21.8607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shultz P. J., Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest. 1992 Nov;90(5):1718–1725. doi: 10.1172/JCI116045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Statman R., Cheng W., Cunningham J. N., Henderson J. L., Damiani P., Siconolfi A., Rogers D., Horovitz J. H. Nitric oxide inhibition in the treatment of the sepsis syndrome is detrimental to tissue oxygenation. J Surg Res. 1994 Jul;57(1):93–98. doi: 10.1006/jsre.1994.1116. [DOI] [PubMed] [Google Scholar]
  34. Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
  35. Tracey K. J., Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503. doi: 10.1146/annurev.med.45.1.491. [DOI] [PubMed] [Google Scholar]
  36. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
  37. Tracey K. J., Lowry S. F. The role of cytokine mediators in septic shock. Adv Surg. 1990;23:21–56. [PubMed] [Google Scholar]
  38. Tracey K. J. Tumor necrosis factor (cachectin) in the biology of septic shock syndrome. Circ Shock. 1991 Oct;35(2):123–128. [PubMed] [Google Scholar]
  39. Tracey K. J., Vlassara H., Cerami A. Cachectin/tumour necrosis factor. Lancet. 1989 May 20;1(8647):1122–1126. doi: 10.1016/s0140-6736(89)92394-5. [DOI] [PubMed] [Google Scholar]
  40. Ulrich P., Cerami A. Trypanocidal 1,3-arylene diketone bis(guanylhydrazone)s. Structure-activity relationships among substituted and heterocyclic analogues. J Med Chem. 1984 Jan;27(1):35–40. doi: 10.1021/jm00367a007. [DOI] [PubMed] [Google Scholar]
  41. Van Dervort A. L., Yan L., Madara P. J., Cobb J. P., Wesley R. A., Corriveau C. C., Tropea M. M., Danner R. L. Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J Immunol. 1994 Apr 15;152(8):4102–4109. [PubMed] [Google Scholar]
  42. Vodovotz Y., Kwon N. S., Pospischil M., Manning J., Paik J., Nathan C. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-gamma and bacterial lipopolysaccharide. J Immunol. 1994 Apr 15;152(8):4110–4118. [PubMed] [Google Scholar]
  43. Weinberg J. B., Granger D. L., Pisetsky D. S., Seldin M. F., Misukonis M. A., Mason S. N., Pippen A. M., Ruiz P., Wood E. R., Gilkeson G. S. The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med. 1994 Feb 1;179(2):651–660. doi: 10.1084/jem.179.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu G. Y., Brosnan J. T. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. doi: 10.1042/bj2810045. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES