Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1995 Jul;1(5):563–567.

Variable response to a candidate cancer vaccine antigen: MHC control of the antibody response in the rat to avian erythroblastosis virus (AEV)-encoded epithelial growth factor receptor but not AEV-encoded thyroid hormones receptor.

N Nardi 1, N A Mitchison 1
PMCID: PMC2229969  PMID: 8529122

Abstract

BACKGROUND: A problem likely to be encountered in any cancer immunotherapy based on vaccination with a single protein or peptide is variation in the host response. A particularly informative example is provided by the two oncogenic proteins, one intracellular and the other extracellular, encoded by the avian erythroblastosis virus (AEV), homologs of the thyroid hormones receptor (THsR) and the epithelial growth factor receptor (EGFR), respectively. MATERIALS AND METHODS: Antibodies to these two proteins were assayed by radioimmune precipitation (RIP) in sera from MHC-congenic rats immunized by virally induced tumors. RESULTS: Among the four haplotypes tested, RT1(1) rats exhibited a significantly lower response to the EGFR homolog than the high responders RT1c and RT1u, while RT1a rat strains had an intermediate response. Analysis of the recombinant haplotype RT1ac indicated that the response is controlled, as expected, by the class II locus of the MHC. In contrast, these rat strains responded uniformly to the intracellular THsR homolog. CONCLUSIONS: These results support the hypothesis that MHC restriction of the response to self-related proteins reflects mainly a tolerance mechanism. They sound a note of warning for cancer vaccine development, and also one of positive advice. The likelihood of MHC restriction suggests that a widely applicable polyvalent vaccine should be the final aim in cancer immunotherapy. Yet, paradoxically, evidence of MHC restriction can help establish that a candidate vaccine is likely to prove effective.

Full text

PDF
563

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Damm K., Beug H., Graf T., Vennström B. A single point mutation in erbA restores the erythroid transforming potential of a mutant avian erythroblastosis virus (AEV) defective in both erbA and erbB oncogenes. EMBO J. 1987 Feb;6(2):375–382. doi: 10.1002/j.1460-2075.1987.tb04765.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Disis M. L., Smith J. W., Murphy A. E., Chen W., Cheever M. A. In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res. 1994 Feb 15;54(4):1071–1076. [PubMed] [Google Scholar]
  3. Hayman M. J., Ramsay G. M., Savin K., Kitchener G., Graf T., Beug H. Identification and characterization of the avian erythroblastosis virus erbB gene product as a membrane glycoprotein. Cell. 1983 Feb;32(2):579–588. doi: 10.1016/0092-8674(83)90477-4. [DOI] [PubMed] [Google Scholar]
  4. Ishida T., Tsujisaki M., Hanzawa Y., Hirakawa T., Hinoda Y., Imai K., Yachi A. Significance of erbB-2 gene product as a target molecule for cancer therapy. Scand J Immunol. 1994 May;39(5):459–466. doi: 10.1111/j.1365-3083.1994.tb03401.x. [DOI] [PubMed] [Google Scholar]
  5. Libermann T. A., Nusbaum H. R., Razon N., Kris R., Lax I., Soreq H., Whittle N., Waterfield M. D., Ullrich A., Schlessinger J. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985 Jan 10;313(5998):144–147. doi: 10.1038/313144a0. [DOI] [PubMed] [Google Scholar]
  6. Natali P. G., Nicotra M. R., Digiesi G., Cavaliere R., Bigotti A., Trizio D., Segatto O. Expression of gp185HER-2 in human cutaneous melanoma: implications for experimental immunotherapeutics. Int J Cancer. 1994 Feb 1;56(3):341–346. doi: 10.1002/ijc.2910560308. [DOI] [PubMed] [Google Scholar]
  7. Salvat S., Auger I., Rochelle L., Begovich A., Geburher L., Sette A., Roudier J. Tolerance to a self-peptide from the third hypervariable region of HLA DRB1*0401 in rheumatoid arthritis patients and normal subjects. J Immunol. 1994 Dec 1;153(11):5321–5329. [PubMed] [Google Scholar]
  8. Sette A., Sidney J., Gaeta F. C., Appella E., Colón S. M., del Guercio M. F., Guéry J. C., Adorini L. MHC class II molecules bind indiscriminately self and non-self peptide homologs: effect on the immunogenicity of non-self peptides. Int Immunol. 1993 Jun;5(6):631–638. doi: 10.1093/intimm/5.6.631. [DOI] [PubMed] [Google Scholar]
  9. Talwar G. P., Singh O., Pal R., Chatterjee N., Sahai P., Dhall K., Kaur J., Das S. K., Suri S., Buckshee K. A vaccine that prevents pregnancy in women. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8532–8536. doi: 10.1073/pnas.91.18.8532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Urban J. L., Schreiber H. Tumor antigens. Annu Rev Immunol. 1992;10:617–644. doi: 10.1146/annurev.iy.10.040192.003153. [DOI] [PubMed] [Google Scholar]
  11. Watanabe H., Okumura M., Hirayama K., Sasazuki T. HLA-Bw54-DR4-DRw53-DQw4 haplotype controls nonresponsiveness to hepatitis-B surface antigen via CD8-positive suppressor T cells. Tissue Antigens. 1990 Aug;36(2):69–74. doi: 10.1111/j.1399-0039.1990.tb01802.x. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES