Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1996 May;2(3):325–333.

Immunophilin regulation of neurotransmitter release.

J P Steiner 1, T M Dawson 1, M Fotuhi 1, S H Snyder 1
PMCID: PMC2230146  PMID: 8784785

Abstract

BACKGROUND: The immunophilins are proteins that mediate actions of immunosuppressant drugs such as FK506 and cyclosporin A by binding to calcineurin, inhibiting its phosphatase activity, and increasing the phosphorylation level of transcription factors required for interleukin 2 formation. Though concentrations in the brain greatly exceed levels in immune tissues, no function has been previously established for nervous system immunophilins. Nitric oxide (NO) has been implicated in neurotransmitter release. FK506 appears to inhibit NO production by maintaining NO synthase in a highly phosphorylated and thereby inactivated state. Accordingly, we examined effects of FK506 and cyclosporin A on neurotransmitter release in PC12 cells treated with nerve growth factor (NGF) and in rat brain striatal synaptosomes. MATERIALS AND METHODS: We monitored effects of immunophilin ligands on [3H]-neurotransmitter release from PC12 cells differentiated with NGF. Rat brain striatal synaptosomes were loaded with radiolabeled transmitters and treated with FK506 or cyclosporin A prior to initiating neurotransmitter release with N-methyl-D-aspartate (NMDA) or potassium depolarization. Striatal synaptosomes were also loaded with 32P-orthophosphate and treated with FK506. 32P-labeled synaptic vesicle proteins were isolated from these synaptosomes in an attempt to relate specific FK506-dependent phosphorylation of vesicle proteins with the effects of FK506 on neurotransmitter release. Identification of proteins targetted by FK506 was made by immunoblot analysis and immunoprecipitation. RESULTS: Low nanomolar concentrations of the immunosuppressant drugs FK506 and cyclosporin A (CsA) inhibit transmitter release from PC-12 cells and from NMDA-stimulated brain synaptosomes. By contrast, the immunosuppressants augment depolarization-induced transmitter release from synaptosomes. Synapsin I, a synaptic vesicle phosphoprotein, displays enhanced phosphorylation in the presence of FK506. CONCLUSIONS: Inhibition of transmitter release in PC-12 cells and NMDA-treated synaptosomes by immunosuppressants may reflect augmented phosphorylation of NO synthase, reducing its catalytic activity. This fits with the requirement of NO for transmitter release in PC12 cells and NMDA-treated synaptosomes. Stimulation by immunosuppressants of transmitter release in potassium depolarized synaptosomes may result from augmented phosphorylation of synapsin I, whose phosphorylation is known to facilitate transmitter release. Thus, immunophilins may modulate release of numerous neurotransmitters both by influencing NO formation and the phosphorylation state of synaptic vesicle-associated proteins.

Full text

PDF
325

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dawson T. M., Steiner J. P., Dawson V. L., Dinerman J. L., Uhl G. R., Snyder S. H. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9808–9812. doi: 10.1073/pnas.90.21.9808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dawson V. L., Dawson T. M., London E. D., Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dinerman J. L., Steiner J. P., Dawson T. M., Dawson V., Snyder S. H. Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. Neuropharmacology. 1994 Nov;33(11):1245–1251. doi: 10.1016/0028-3908(94)90023-x. [DOI] [PubMed] [Google Scholar]
  4. Hanbauer I., Wink D., Osawa Y., Edelman G. M., Gally J. A. Role of nitric oxide in NMDA-evoked release of [3H]-dopamine from striatal slices. Neuroreport. 1992 May;3(5):409–412. doi: 10.1097/00001756-199205000-00008. [DOI] [PubMed] [Google Scholar]
  5. Hirsch D. B., Steiner J. P., Dawson T. M., Mammen A., Hayek E., Snyder S. H. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr Biol. 1993 Nov 1;3(11):749–754. doi: 10.1016/0960-9822(93)90022-g. [DOI] [PubMed] [Google Scholar]
  6. Hultsch T., Albers M. W., Schreiber S. L., Hohman R. J. Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6229–6233. doi: 10.1073/pnas.88.14.6229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. King M. M., Huang C. Y., Chock P. B., Nairn A. C., Hemmings H. C., Jr, Chan K. F., Greengard P. Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem. 1984 Jul 10;259(13):8080–8083. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Liu J. P., Sim A. T., Robinson P. J. Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science. 1994 Aug 12;265(5174):970–973. doi: 10.1126/science.8052858. [DOI] [PubMed] [Google Scholar]
  10. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  11. Llinás R., Gruner J. A., Sugimori M., McGuinness T. L., Greengard P. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J Physiol. 1991 May;436:257–282. doi: 10.1113/jphysiol.1991.sp018549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Llinás R., McGuinness T. L., Leonard C. S., Sugimori M., Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A. 1985 May;82(9):3035–3039. doi: 10.1073/pnas.82.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lyson T., Ermel L. D., Belshaw P. J., Alberg D. G., Schreiber S. L., Victor R. G. Cyclosporine- and FK506-induced sympathetic activation correlates with calcineurin-mediated inhibition of T-cell signaling. Circ Res. 1993 Sep;73(3):596–602. doi: 10.1161/01.res.73.3.596. [DOI] [PubMed] [Google Scholar]
  14. Marin P., Lafon-Cazal M., Bockaert J. A Nitric Oxide Synthase Activity Selectively Stimulated by NMDA Receptors Depends on Protein Kinase C Activation in Mouse Striatal Neurons. Eur J Neurosci. 1992;4(5):425–432. doi: 10.1111/j.1460-9568.1992.tb00892.x. [DOI] [PubMed] [Google Scholar]
  15. Mulkey R. M., Endo S., Shenolikar S., Malenka R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994 Jun 9;369(6480):486–488. doi: 10.1038/369486a0. [DOI] [PubMed] [Google Scholar]
  16. Nichols R. A., Chilcote T. J., Czernik A. J., Greengard P. Synapsin I regulates glutamate release from rat brain synaptosomes. J Neurochem. 1992 Feb;58(2):783–785. doi: 10.1111/j.1471-4159.1992.tb09788.x. [DOI] [PubMed] [Google Scholar]
  17. Nichols R. A., Suplick G. R., Brown J. M. Calcineurin-mediated protein dephosphorylation in brain nerve terminals regulates the release of glutamate. J Biol Chem. 1994 Sep 23;269(38):23817–23823. [PubMed] [Google Scholar]
  18. Sandberg K., Berry C. J., Eugster E., Rogers T. B. A role for cGMP during tetanus toxin blockade of acetylcholine release in the rat pheochromocytoma (PC12) cell line. J Neurosci. 1989 Nov;9(11):3946–3954. doi: 10.1523/JNEUROSCI.09-11-03946.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sandberg K., Berry C. J., Rogers T. B. Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. Binding, internalization, and inhibition of acetylcholine release. J Biol Chem. 1989 Apr 5;264(10):5679–5686. [PubMed] [Google Scholar]
  20. Schreiber S. L. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science. 1991 Jan 18;251(4991):283–287. doi: 10.1126/science.1702904. [DOI] [PubMed] [Google Scholar]
  21. Schreiber S. L. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell. 1992 Aug 7;70(3):365–368. doi: 10.1016/0092-8674(92)90158-9. [DOI] [PubMed] [Google Scholar]
  22. Steiner J. P., Dawson T. M., Fotuhi M., Glatt C. E., Snowman A. M., Cohen N., Snyder S. H. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature. 1992 Aug 13;358(6387):584–587. doi: 10.1038/358584a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES