Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1996 Sep;2(5):597–607.

The non-ligand binding beta-isoform of the human glucocorticoid receptor (hGR beta): tissue levels, mechanism of action, and potential physiologic role.

M de Castro 1, S Elliot 1, T Kino 1, C Bamberger 1, M Karl 1, E Webster 1, G P Chrousos 1
PMCID: PMC2230188  PMID: 8898375

Abstract

BACKGROUND: Alternative splicing of the transcripts of the human glucocorticoid receptor gene results in two mutually exclusive products, the classic, ligand-binding glucocorticoid receptor (hGR alpha), and a dominant negative non-ligand-binding isoform, hGR beta. MATERIALS AND METHODS: We examined the existence of and quantified both hGR alpha and hGR beta isoforms in a panel of human tissues, as well as in intact and fractionated HeLa cells, using specific quantitative Western blots and/or immunocytochemistry. We studied the potential interactions of hGR beta with heat shock protein (hsp) 90 and/or hGR alpha using cross-immunoadsorption/precipitation procedures followed by Western blots. RESULTS: For the first time, we demonstrated the natural existence of the hGR beta protein, which was widely expressed in human tissues. The ratio of immunoreactive hGR alpha to hGR beta varied from 0.2 to 1.0 among different tissues, and was approximately 0.2 in HeLa cells. In the latter, both isoforms were distributed in the cytoplasm and nucleus in the absence of the hormonal ligand, and translocated into the nucleus after addition of dexamethasone. The cytosolic and nuclear hGR alpha-to-hGR beta ratio remained the same before and after dexamethasone exposure, suggesting that upon activation the two isoforms translocated into the nucleus in equal proportions. hGR alpha- and hGR beta-specific antibodies cross-adsorbed and precipitated cytosolic and nuclear glucocorticoid hGR alpha and hGR beta, respectively, as well as hsp90, suggesting that hGR alpha and hGR beta are in complex with hsp90 and/or each other. CONCLUSIONS: The hGR beta protein is widely expressed throughout the human body and present mostly in the cytoplasm of human cells, in complex with hsp90 and other proteins. In the presence of glucocorticoid, hGR beta probably heterodimerizes with ligand-bound hGR alpha and translocates into the nucleus to act as a dominant negative inhibitor of the classic receptor.

Full text

PDF
597

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamberger C. M., Bamberger A. M., de Castro M., Chrousos G. P. Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest. 1995 Jun;95(6):2435–2441. doi: 10.1172/JCI117943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chrousos G. P., Detera-Wadleigh S. D., Karl M. Syndromes of glucocorticoid resistance. Ann Intern Med. 1993 Dec 1;119(11):1113–1124. doi: 10.7326/0003-4819-119-11-199312010-00009. [DOI] [PubMed] [Google Scholar]
  3. Chrousos G. P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995 May 18;332(20):1351–1362. doi: 10.1056/NEJM199505183322008. [DOI] [PubMed] [Google Scholar]
  4. Cooney A. J., Leng X., Tsai S. Y., O'Malley B. W., Tsai M. J. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem. 1993 Feb 25;268(6):4152–4160. [PubMed] [Google Scholar]
  5. Dalman F. C., Scherrer L. C., Taylor L. P., Akil H., Pratt W. B. Localization of the 90-kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J Biol Chem. 1991 Feb 25;266(6):3482–3490. [PubMed] [Google Scholar]
  6. Elliot S., Goldsmith P., Knepper M., Haughey M., Olson B. Urinary excretion of aquaporin-2 in humans: a potential marker of collecting duct responsiveness to vasopressin. J Am Soc Nephrol. 1996 Mar;7(3):403–409. doi: 10.1681/ASN.V73403. [DOI] [PubMed] [Google Scholar]
  7. Encío I. J., Detera-Wadleigh S. D. The genomic structure of the human glucocorticoid receptor. J Biol Chem. 1991 Apr 15;266(11):7182–7188. [PubMed] [Google Scholar]
  8. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giguère V., Hollenberg S. M., Rosenfeld M. G., Evans R. M. Functional domains of the human glucocorticoid receptor. Cell. 1986 Aug 29;46(5):645–652. doi: 10.1016/0092-8674(86)90339-9. [DOI] [PubMed] [Google Scholar]
  10. Hollenberg S. M., Weinberger C., Ong E. S., Cerelli G., Oro A., Lebo R., Thompson E. B., Rosenfeld M. G., Evans R. M. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985 Dec 19;318(6047):635–641. doi: 10.1038/318635a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hurley D. M., Accili D., Stratakis C. A., Karl M., Vamvakopoulos N., Rorer E., Constantine K., Taylor S. I., Chrousos G. P. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest. 1991 Feb;87(2):680–686. doi: 10.1172/JCI115046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karl M., Lamberts S. W., Detera-Wadleigh S. D., Encio I. J., Stratakis C. A., Hurley D. M., Accili D., Chrousos G. P. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab. 1993 Mar;76(3):683–689. doi: 10.1210/jcem.76.3.8445027. [DOI] [PubMed] [Google Scholar]
  13. Karl M., Lamberts S. W., Koper J. W., Katz D. A., Huizenga N. E., Kino T., Haddad B. R., Hughes M. R., Chrousos G. P. Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians. 1996 Jul;108(4):296–307. [PubMed] [Google Scholar]
  14. Katz D., Lazar M. A. Dominant negative activity of an endogenous thyroid hormone receptor variant (alpha 2) is due to competition for binding sites on target genes. J Biol Chem. 1993 Oct 5;268(28):20904–20910. [PubMed] [Google Scholar]
  15. Kaumaya P. T., Berndt K. D., Heidorn D. B., Trewhella J., Kezdy F. J., Goldberg E. Synthesis and biophysical characterization of engineered topographic immunogenic determinants with alpha alpha topology. Biochemistry. 1990 Jan 9;29(1):13–23. doi: 10.1021/bi00453a002. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Liu R. T., Suzuki S., Miyamoto T., Takeda T., Ozata M., DeGroot L. J. The dominant negative effect of thyroid hormone receptor splicing variant alpha 2 does not require binding to a thyroid response element. Mol Endocrinol. 1995 Jan;9(1):86–95. doi: 10.1210/mend.9.1.7760853. [DOI] [PubMed] [Google Scholar]
  18. Nagaya T., Eberhardt N. L., Jameson J. L. Thyroid hormone resistance syndrome: correlation of dominant negative activity and location of mutations. J Clin Endocrinol Metab. 1993 Oct;77(4):982–990. doi: 10.1210/jcem.77.4.8408475. [DOI] [PubMed] [Google Scholar]
  19. Oakley R. H., Sar M., Cidlowski J. A. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem. 1996 Apr 19;271(16):9550–9559. doi: 10.1074/jbc.271.16.9550. [DOI] [PubMed] [Google Scholar]
  20. Picard D., Salser S. J., Yamamoto K. R. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell. 1988 Sep 23;54(7):1073–1080. doi: 10.1016/0092-8674(88)90122-5. [DOI] [PubMed] [Google Scholar]
  21. Picard D., Yamamoto K. R. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 1987 Nov;6(11):3333–3340. doi: 10.1002/j.1460-2075.1987.tb02654.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pratt W. B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem. 1993 Oct 15;268(29):21455–21458. [PubMed] [Google Scholar]
  23. Sher E. R., Leung D. Y., Surs W., Kam J. C., Zieg G., Kamada A. K., Szefler S. J. Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J Clin Invest. 1994 Jan;93(1):33–39. doi: 10.1172/JCI116963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith D. F. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol. 1993 Nov;7(11):1418–1429. doi: 10.1210/mend.7.11.7906860. [DOI] [PubMed] [Google Scholar]
  25. Tilders F. J., DeRijk R. H., Van Dam A. M., Vincent V. A., Schotanus K., Persoons J. H. Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: routes and intermediate signals. Psychoneuroendocrinology. 1994;19(2):209–232. doi: 10.1016/0306-4530(94)90010-8. [DOI] [PubMed] [Google Scholar]
  26. Truss M., Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993 Aug;14(4):459–479. doi: 10.1210/edrv-14-4-459. [DOI] [PubMed] [Google Scholar]
  27. Tsai M. J., O'Malley B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486. doi: 10.1146/annurev.bi.63.070194.002315. [DOI] [PubMed] [Google Scholar]
  28. Ullrich S. J., Moore S. K., Appella E. Transcriptional and translational analysis of the murine 84- and 86-kDa heat shock proteins. J Biol Chem. 1989 Apr 25;264(12):6810–6816. [PubMed] [Google Scholar]
  29. Vegeto E., Shahbaz M. M., Wen D. X., Goldman M. E., O'Malley B. W., McDonnell D. P. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol. 1993 Oct;7(10):1244–1255. doi: 10.1210/mend.7.10.8264658. [DOI] [PubMed] [Google Scholar]
  30. Wang Y., Miksicek R. J. Identification of a dominant negative form of the human estrogen receptor. Mol Endocrinol. 1991 Nov;5(11):1707–1715. doi: 10.1210/mend-5-11-1707. [DOI] [PubMed] [Google Scholar]
  31. Yamamoto K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209–252. doi: 10.1146/annurev.ge.19.120185.001233. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES