Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1997 Jul;3(7):431–440.

Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes.

O Sorg 1, T F Horn 1, N Yu 1, D L Gruol 1, F E Bloom 1
PMCID: PMC2230215  PMID: 9260155

Abstract

BACKGROUND: The recent literature suggests that free radicals and reactive oxygen species may account for many pathologies, including those of the nervous system. MATERIALS AND METHODS: The influence of various reactive oxygen species on the rate of glutamate uptake by astrocytes was investigated on monolayers of primary cultures of mouse cortical astrocytes. RESULTS: Hydrogen peroxide and peroxynitrite inhibited glutamate uptake in a concentration-dependent manner. Addition of copper ions and ascorbate increased the potency and the efficacy of the hydrogen peroxide effect, supporting the potential neurotoxicity of the hydroxyl radical. The free radical scavenger dimethylthiourea effectively eliminated the inhibitory potential of a mixture containing hydrogen peroxide, copper sulphate, and ascorbate on the rate of glutamate transport into astrocytes. The inhibitory effect of hydrogen peroxide on glutamate uptake was not altered by the inhibition of glutathione peroxidase, whereas the inhibition of catalase by sodium azide clearly potentiated this effect. Superoxide and nitric oxide had no effect by themselves on the rate of glutamate uptake by astrocytes. The absence of an effect of nitric oxide is not due to an inability of astrocytes to respond to this substance, since the same cultures did respond to nitric oxide with a sustained increase in cytoplasmic free calcium. CONCLUSION: These results confirm that reactive oxygen species have a potential neurotoxicity by means of impairing glutamate transport into astrocytes, and they suggest that preventing the accumulation of hydrogen peroxide in the extracellular space of the brain, especially during conditions that favor hydroxyl radical formation, could be therapeutic.

Full text

PDF
431

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chaudiere J., Wilhelmsen E. C., Tappel A. L. Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J Biol Chem. 1984 Jan 25;259(2):1043–1050. [PubMed] [Google Scholar]
  2. Choi D. W. Amyotrophic lateral sclerosis and glutamate--too much of a good thing? N Engl J Med. 1992 May 28;326(22):1493–1495. doi: 10.1056/NEJM199205283262210. [DOI] [PubMed] [Google Scholar]
  3. Coyle J. T., Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993 Oct 29;262(5134):689–695. doi: 10.1126/science.7901908. [DOI] [PubMed] [Google Scholar]
  4. DeMaster E. G., Quast B. J., Redfern B., Nagasawa H. T. Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry. 1995 Sep 12;34(36):11494–11499. doi: 10.1021/bi00036a023. [DOI] [PubMed] [Google Scholar]
  5. Devesa A., O'Connor J. E., Garciá C., Puertes I. R., Viña J. R. Glutathione metabolism in primary astrocyte cultures: flow cytometric evidence of heterogeneous distribution of GSH content. Brain Res. 1993 Aug 6;618(2):181–189. doi: 10.1016/0006-8993(93)91264-s. [DOI] [PubMed] [Google Scholar]
  6. Downey J. M. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol. 1990;52:487–504. doi: 10.1146/annurev.ph.52.030190.002415. [DOI] [PubMed] [Google Scholar]
  7. Duffy S., MacVicar B. A. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci. 1996 Jan;16(1):71–81. doi: 10.1523/JNEUROSCI.16-01-00071.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flamm E. S., Demopoulos H. B., Seligman M. L., Poser R. G., Ransohoff J. Free radicals in cerebral ischemia. Stroke. 1978 Sep-Oct;9(5):445–447. doi: 10.1161/01.str.9.5.445. [DOI] [PubMed] [Google Scholar]
  9. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984 Jan;42(1):1–11. doi: 10.1111/j.1471-4159.1984.tb09689.x. [DOI] [PubMed] [Google Scholar]
  10. Greenwald R. A., Moy W. W. Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheum. 1979 Mar;22(3):251–259. doi: 10.1002/art.1780220307. [DOI] [PubMed] [Google Scholar]
  11. Grisham M. B. Interaction between nitric oxide and superoxide: role in modulating leukocyte adhesion in the postischemic microvasculature. Transplant Proc. 1995 Oct;27(5):2842–2843. [PubMed] [Google Scholar]
  12. Gruol D. L., Curry J. G. Calcium signals elicited by quisqualate in cultured Purkinje neurons show developmental changes in sensitivity to acute alcohol. Brain Res. 1995 Feb 27;673(1):1–12. doi: 10.1016/0006-8993(94)01324-b. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Gutteridge J. M. Free radicals in disease processes: a compilation of cause and consequence. Free Radic Res Commun. 1993;19(3):141–158. doi: 10.3109/10715769309111598. [DOI] [PubMed] [Google Scholar]
  15. Gutteridge J. M. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci. 1994 Nov 17;738:201–213. doi: 10.1111/j.1749-6632.1994.tb21805.x. [DOI] [PubMed] [Google Scholar]
  16. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992 Nov;59(5):1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. [DOI] [PubMed] [Google Scholar]
  18. Hamberger A. Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res. 1971 Aug 7;31(1):169–178. doi: 10.1016/0006-8993(71)90641-x. [DOI] [PubMed] [Google Scholar]
  19. Holmberg P. The physics and chemistry of free radicals. Med Biol. 1984;62(2):68–70. [PubMed] [Google Scholar]
  20. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  21. Johnson K. J., Weinberg J. M. Postischemic renal injury due to oxygen radicals. Curr Opin Nephrol Hypertens. 1993 Jul;2(4):625–635. doi: 10.1097/00041552-199307000-00014. [DOI] [PubMed] [Google Scholar]
  22. Kiechle F. L., Malinski T. Nitric oxide. Biochemistry, pathophysiology, and detection. Am J Clin Pathol. 1993 Nov;100(5):567–575. doi: 10.1093/ajcp/100.5.567. [DOI] [PubMed] [Google Scholar]
  23. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  24. Lewis R. S., Deen W. M. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol. 1994 Jul-Aug;7(4):568–574. doi: 10.1021/tx00040a013. [DOI] [PubMed] [Google Scholar]
  25. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  26. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  27. Mitani A., Yanase H., Namba S., Shudo M., Kataoka K. In vitro ischemia-induced intracellular Ca2+ elevation in cerebellar slices: a comparative study with the values found in hippocampal slices. Acta Neuropathol. 1995;89(1):2–7. doi: 10.1007/BF00294252. [DOI] [PubMed] [Google Scholar]
  28. Moyer V. D., Cistulli C. A., Vaslet C. A., Kane A. B. Oxygen radicals and asbestos carcinogenesis. Environ Health Perspect. 1994 Dec;102 (Suppl 10):131–136. doi: 10.1289/ehp.94102s10131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ogata T., Nakamura Y., Tsuji K., Okumura H., Kataoka K., Shibata T. Role of aspartate in ischemic spinal cord damage. J Orthop Res. 1996 May;14(3):504–510. doi: 10.1002/jor.1100140322. [DOI] [PubMed] [Google Scholar]
  30. Piani D., Frei K., Pfister H. W., Fontana A. Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J Neuroimmunol. 1993 Oct;48(1):99–104. doi: 10.1016/0165-5728(93)90063-5. [DOI] [PubMed] [Google Scholar]
  31. Preclik G., Stange E. F., Ditschuneit H. Limited utilization of exogenous arachidonic acid by the prostaglandin cyclooxygenase in gastric mucosa: the role of protein binding, glutathione peroxidase, and hydrogen peroxides. Prostaglandins. 1992 Sep;44(3):177–197. doi: 10.1016/0090-6980(92)90012-i. [DOI] [PubMed] [Google Scholar]
  32. Przedborski S., Donaldson D., Jakowec M., Kish S. J., Guttman M., Rosoklija G., Hays A. P. Brain superoxide dismutase, catalase, and glutathione peroxidase activities in amyotrophic lateral sclerosis. Ann Neurol. 1996 Feb;39(2):158–165. doi: 10.1002/ana.410390204. [DOI] [PubMed] [Google Scholar]
  33. Qiu Z., Parsons K. L., Gruol D. L. Interleukin-6 selectively enhances the intracellular calcium response to NMDA in developing CNS neurons. J Neurosci. 1995 Oct;15(10):6688–6699. doi: 10.1523/JNEUROSCI.15-10-06688.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rees R., Smith D., Li T. D., Cashmer B., Garner W., Punch J., Smith D. J., Jr The role of xanthine oxidase and xanthine dehydrogenase in skin ischemia. J Surg Res. 1994 Feb;56(2):162–167. doi: 10.1006/jsre.1994.1027. [DOI] [PubMed] [Google Scholar]
  35. Rothman S. M. Excitotoxins: possible mechanisms of action. Ann N Y Acad Sci. 1992 May 11;648:132–139. doi: 10.1111/j.1749-6632.1992.tb24531.x. [DOI] [PubMed] [Google Scholar]
  36. Royall J. A., Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993 May;302(2):348–355. doi: 10.1006/abbi.1993.1222. [DOI] [PubMed] [Google Scholar]
  37. Scott M. D., Wagner T. C., Chiu D. T. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim Biophys Acta. 1993 Apr 30;1181(2):163–168. doi: 10.1016/0925-4439(93)90106-b. [DOI] [PubMed] [Google Scholar]
  38. Shinar E., Navok T., Chevion M. The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper. J Biol Chem. 1983 Dec 25;258(24):14778–14783. [PubMed] [Google Scholar]
  39. Sorg O., Magistretti P. J. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res. 1991 Nov 1;563(1-2):227–233. doi: 10.1016/0006-8993(91)91538-c. [DOI] [PubMed] [Google Scholar]
  40. Squadrito G. L., Pryor W. A. The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem Biol Interact. 1995 May 19;96(2):203–206. doi: 10.1016/0009-2797(94)03591-u. [DOI] [PubMed] [Google Scholar]
  41. Stella N., Tencé M., Glowinski J., Prémont J. Glutamate induces the release of arachidonic acid by interacting with an atypical metabotropic receptor present on mouse brain astrocytes. Ren Physiol Biochem. 1994 May-Aug;17(3-4):153–156. doi: 10.1159/000173806. [DOI] [PubMed] [Google Scholar]
  42. Szent-Györgyi A. The living state and cancer. Ciba Found Symp. 1978;(67):3–18. doi: 10.1002/9780470720493.ch2. [DOI] [PubMed] [Google Scholar]
  43. Tappel A. L. Glutathione peroxidase and hydroperoxides. Methods Enzymol. 1978;52:506–513. doi: 10.1016/s0076-6879(78)52055-7. [DOI] [PubMed] [Google Scholar]
  44. Trotti D., Rossi D., Gjesdal O., Levy L. M., Racagni G., Danbolt N. C., Volterra A. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem. 1996 Mar 15;271(11):5976–5979. doi: 10.1074/jbc.271.11.5976. [DOI] [PubMed] [Google Scholar]
  45. Ueno S., Sugiyama M., Susa N., Furukawa Y. Effect of dimethylthiourea on chromium (VI)-induced DNA single-strand breaks in Chinese hamster V-79 cells. Mutat Res. 1995 Apr;346(4):247–253. doi: 10.1016/0165-7992(95)90041-1. [DOI] [PubMed] [Google Scholar]
  46. Vanella A., Campisi A., Castorina C., Sorrenti V., Attaguile G., Samperi P., Azzia N., Di Giacomo C., Schilirò G. Antioxidant enzymatic systems and oxidative stress in erythrocytes with G6PD deficiency: effect of deferoxamine. Pharmacol Res. 1991 Jul;24(1):25–31. doi: 10.1016/1043-6618(91)90061-2. [DOI] [PubMed] [Google Scholar]
  47. Volterra A., Trotti D., Cassutti P., Tromba C., Salvaggio A., Melcangi R. C., Racagni G. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem. 1992 Aug;59(2):600–606. doi: 10.1111/j.1471-4159.1992.tb09411.x. [DOI] [PubMed] [Google Scholar]
  48. Volterra A., Trotti D., Tromba C., Floridi S., Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci. 1994 May;14(5 Pt 1):2924–2932. doi: 10.1523/JNEUROSCI.14-05-02924.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wei H. Activation of oncogenes and/or inactivation of anti-oncogenes by reactive oxygen species. Med Hypotheses. 1992 Nov;39(3):267–270. doi: 10.1016/0306-9877(92)90120-2. [DOI] [PubMed] [Google Scholar]
  50. Williams D. A., Fogarty K. E., Tsien R. Y., Fay F. S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature. 1985 Dec 12;318(6046):558–561. doi: 10.1038/318558a0. [DOI] [PubMed] [Google Scholar]
  51. Yu A. C., Chan P. H., Fishman R. A. Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J Neurochem. 1986 Oct;47(4):1181–1189. doi: 10.1111/j.1471-4159.1986.tb00738.x. [DOI] [PubMed] [Google Scholar]
  52. Yudkoff M., Pleasure D., Cregar L., Lin Z. P., Nissim I., Stern J., Nissim I. Glutathione turnover in cultured astrocytes: studies with [15N]glutamate. J Neurochem. 1990 Jul;55(1):137–145. doi: 10.1111/j.1471-4159.1990.tb08831.x. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES