Abstract
BACKGROUND: Raf-1, a cytoplasmic serine/threonine protein kinase, plays an important role in mitogen- and damage-responsive cellular signal transduction pathways. Consistent with this notion is the fact that constitutive modulation of expression and/or activity of Raf-1 protein kinase modifies cell growth, proliferation, and cell survival. Although these effects are controlled at least in part by transcriptional mechanisms, the role of Raf-1 in the regulation of specific gene expression is unclear. MATERIALS AND METHODS: Differential display of mRNA was used to identify the genes differentially expressed in human head and neck squamous carcinoma cells (PCI-06A) transfected with either the antisense c-raf-1 cDNA (PCI-06A-Raf(AS)), or a portion of cDNA coding for the kinase domain of Raf-1 (PCI-06A-Raf(K)). The differentially expressed fragments were cloned and sequenced, and they were used as probes to compare the expression patterns in parent transfectants by Northern blot analysis. In addition, expression patterns of the novel genes were examined in normal tissues and cancer cell lines. RESULTS: Six differentially expressed cDNA fragments were identified and sequenced. Northern blot analysis revealed that four of these fragments representing human alpha 1-antichymotrypsin (alpha 1-ACT), mitochondrial cytochrome c oxidase subunit II (COX-II), and two as-yet unidentified cDNAs (KAS-110 and KAS-111) were relatively overexpressed in PCI-06A-Raf(AS) transfectants compared with PCI-06A-Raf(K) transfectants. The other two cDNA fragments representing human elongation factor-1 alpha (HEF-1 alpha) and ornithine decarboxylase antizyme (OAz) were overexpressed in PCI-06A-Raf(K) transfectants compared with PCI-06A-Raf(AS) transfectants. The KAS-110 (114 bp) and KAS-111 (202 bp) cDNAs did not show significant matches with sequences in the GenEMBL, TIGR, and HGS DNA databases, and these may represent novel genes. The KAS-110 and KAS-111 transcripts, approximately 0.9 kb and approximately 0.5 kb, were observed in most normal tissues and several cancer cell types, indicating their housekeeping function. CONCLUSIONS: This study reports novel components of the Raf-1 signaling pathway. alpha 1-ACT, HEF-1 alpha, COX-II, and OAz have been previously implicated in diverse cellular responses including transformation, energy metabolism, and cell survival. Our data suggest that expression of these genes may play a role in the Raf-1-mediated biological activity of PCI-06A cells. The KAS-110 and KAS-111 cDNAs represent unknown genes, and further investigations are necessary to determine their role in the cellular response. Identification of specific targets may provide useful markers for prognosis and therapy selection in squamous cell carcinoma.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auvinen M., Paasinen-Sohns A., Hirai H., Andersson L. C., Hölttä E. Ornithine decarboxylase- and ras-induced cell transformations: reversal by protein tyrosine kinase inhibitors and role of pp130CAS. Mol Cell Biol. 1995 Dec;15(12):6513–6525. doi: 10.1128/mcb.15.12.6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auvinen M., Paasinen A., Andersson L. C., Hölttä E. Ornithine decarboxylase activity is critical for cell transformation. Nature. 1992 Nov 26;360(6402):355–358. doi: 10.1038/360355a0. [DOI] [PubMed] [Google Scholar]
- Bruder J. T., Heidecker G., Rapp U. R. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev. 1992 Apr;6(4):545–556. doi: 10.1101/gad.6.4.545. [DOI] [PubMed] [Google Scholar]
- Dent P., Haser W., Haystead T. A., Vincent L. A., Roberts T. M., Sturgill T. W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992 Sep 4;257(5075):1404–1407. doi: 10.1126/science.1326789. [DOI] [PubMed] [Google Scholar]
- Devary Y., Gottlieb R. A., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell. 1992 Dec 24;71(7):1081–1091. doi: 10.1016/s0092-8674(05)80058-3. [DOI] [PubMed] [Google Scholar]
- Finco T. S., Baldwin A. S., Jr Kappa B site-dependent induction of gene expression by diverse inducers of nuclear factor kappa B requires Raf-1. J Biol Chem. 1993 Aug 25;268(24):17676–17679. [PubMed] [Google Scholar]
- Grammer T. C., Blenis J. The serine protease inhibitors, tosylphenylalanine chloromethyl ketone and tosyllysine chloromethyl ketone, potently inhibit pp70s6k activation. J Biol Chem. 1996 Sep 27;271(39):23650–23652. doi: 10.1074/jbc.271.39.23650. [DOI] [PubMed] [Google Scholar]
- Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
- Heidecker G., Huleihel M., Cleveland J. L., Kolch W., Beck T. W., Lloyd P., Pawson T., Rapp U. R. Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol. 1990 Jun;10(6):2503–2512. doi: 10.1128/mcb.10.6.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidecker G., Kölch W., Morrison D. K., Rapp U. R. The role of Raf-1 phosphorylation in signal transduction. Adv Cancer Res. 1992;58:53–73. doi: 10.1016/s0065-230x(08)60290-0. [DOI] [PubMed] [Google Scholar]
- Heller J. S., Fong W. F., Canellakis E. S. Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1858–1862. doi: 10.1073/pnas.73.6.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heo D. S., Snyderman C., Gollin S. M., Pan S., Walker E., Deka R., Barnes E. L., Johnson J. T., Herberman R. B., Whiteside T. L. Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res. 1989 Sep 15;49(18):5167–5175. [PubMed] [Google Scholar]
- Howe L. R., Leevers S. J., Gómez N., Nakielny S., Cohen P., Marshall C. J. Activation of the MAP kinase pathway by the protein kinase raf. Cell. 1992 Oct 16;71(2):335–342. doi: 10.1016/0092-8674(92)90361-f. [DOI] [PubMed] [Google Scholar]
- Kasid U., Pfeifer A., Brennan T., Beckett M., Weichselbaum R. R., Dritschilo A., Mark G. E. Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science. 1989 Mar 10;243(4896):1354–1356. doi: 10.1126/science.2466340. [DOI] [PubMed] [Google Scholar]
- Kasid U., Pfeifer A., Weichselbaum R. R., Dritschilo A., Mark G. E. The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science. 1987 Aug 28;237(4818):1039–1041. doi: 10.1126/science.3616625. [DOI] [PubMed] [Google Scholar]
- Kasid U., Suy S., Dent P., Ray S., Whiteside T. L., Sturgill T. W. Activation of Raf by ionizing radiation. Nature. 1996 Aug 29;382(6594):813–816. doi: 10.1038/382813a0. [DOI] [PubMed] [Google Scholar]
- Koch I., Hofschneider P. H., Lottspeich F., Eckerskorn C., Koshy R. Tumour-related expression of a translation-elongation factor-like protein. Oncogene. 1990 Jun;5(6):839–843. [PubMed] [Google Scholar]
- Kumazawa Y., Schwartzbach C. J., Liao H. X., Mizumoto K., Kaziro Y., Miura K., Watanabe K., Spremulli L. L. Interactions of bovine mitochondrial phenylalanyl-tRNA with ribosomes and elongation factors from mitochondria and bacteria. Biochim Biophys Acta. 1991 Oct 8;1090(2):167–172. doi: 10.1016/0167-4781(91)90097-6. [DOI] [PubMed] [Google Scholar]
- Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R., Avruch J. Raf-1 activates MAP kinase-kinase. Nature. 1992 Jul 30;358(6385):417–421. doi: 10.1038/358417a0. [DOI] [PubMed] [Google Scholar]
- Li S., Sedivy J. M. Raf-1 protein kinase activates the NF-kappa B transcription factor by dissociating the cytoplasmic NF-kappa B-I kappa B complex. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9247–9251. doi: 10.1073/pnas.90.20.9247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
- Lotem J., Sachs L. Differential suppression by protease inhibitors and cytokines of apoptosis induced by wild-type p53 and cytotoxic agents. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12507–12512. doi: 10.1073/pnas.93.22.12507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
- Monia B. P., Johnston J. F., Geiger T., Muller M., Fabbro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med. 1996 Jun;2(6):668–675. doi: 10.1038/nm0696-668. [DOI] [PubMed] [Google Scholar]
- Murakami Y., Matsufuji S., Miyazaki Y., Hayashi S. Forced expression of antizyme abolishes ornithine decarboxylase activity, suppresses cellular levels of polyamines and inhibits cell growth. Biochem J. 1994 Nov 15;304(Pt 1):183–187. doi: 10.1042/bj3040183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müllauer L., Suzuki H., Fujita H., Katabami M., Kuzumaki N. Identification of genes that exhibit increased expression after flat reversion of NIH/3T3 cells transformed by human activated Ha-ras oncogene. Cancer Lett. 1991 Jul 26;59(1):37–43. doi: 10.1016/0304-3835(91)90133-3. [DOI] [PubMed] [Google Scholar]
- Qureshi S. A., Rim M., Bruder J., Kolch W., Rapp U., Sukhatme V. P., Foster D. A. An inhibitory mutant of c-Raf-1 blocks v-Src-induced activation of the Egr-1 promoter. J Biol Chem. 1991 Nov 5;266(31):20594–20597. [PubMed] [Google Scholar]
- Rubin H. Serine protease inhibitors (SERPINS): where mechanism meets medicine. Nat Med. 1996 Jun;2(6):632–633. doi: 10.1038/nm0696-632. [DOI] [PubMed] [Google Scholar]
- Rubin H. The biology and biochemistry of antichymotrypsin and its potential role as a therapeutic agent. Biol Chem Hoppe Seyler. 1992 Jul;373(7):497–502. doi: 10.1515/bchm3.1992.373.2.497. [DOI] [PubMed] [Google Scholar]
- Rubin H., Wang Z. M., Nickbarg E. B., McLarney S., Naidoo N., Schoenberger O. L., Johnson J. L., Cooperman B. S. Cloning, expression, purification, and biological activity of recombinant native and variant human alpha 1-antichymotrypsins. J Biol Chem. 1990 Jan 15;265(2):1199–1207. [PubMed] [Google Scholar]
- Soldatenkov V. A., Dritschilo A., Wang F. H., Olah Z., Anderson W. B., Kasid U. Inhibition of Raf-1 protein kinase by antisense phosphorothioate oligodeoxyribonucleotide is associated with sensitization of human laryngeal squamous carcinoma cells to gamma radiation. Cancer J Sci Am. 1997 Jan-Feb;3(1):13–20. [PubMed] [Google Scholar]
- Stanton V. P., Jr, Nichols D. W., Laudano A. P., Cooper G. M. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol Cell Biol. 1989 Feb;9(2):639–647. doi: 10.1128/mcb.9.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suy S., Anderson W. B., Dent P., Chang E., Kasid U. Association of Grb2 with Sos and Ras with Raf-1 upon gamma irradiation of breast cancer cells. Oncogene. 1997 Jul 3;15(1):53–61. doi: 10.1038/sj.onc.1201165. [DOI] [PubMed] [Google Scholar]
- Taniguchi S., Miyamoto S., Sadano H., Kobayashi H. Rat elongation factor 1 alpha: sequence of cDNA from a highly metastatic fos-transferred cell line. Nucleic Acids Res. 1991 Dec 25;19(24):6949–6949. doi: 10.1093/nar/19.24.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatsuka M., Mitsui H., Wada M., Nagata A., Nojima H., Okayama H. Elongation factor-1 alpha gene determines susceptibility to transformation. Nature. 1992 Sep 24;359(6393):333–336. doi: 10.1038/359333a0. [DOI] [PubMed] [Google Scholar]
- Tewari D. S., Qian Y., Thornton R. D., Pieringer J., Taub R., Mochan E., Tewari M. Molecular cloning and sequencing of a human cDNA encoding ornithine decarboxylase antizyme. Biochim Biophys Acta. 1994 Dec 14;1209(2):293–295. doi: 10.1016/0167-4838(94)90199-6. [DOI] [PubMed] [Google Scholar]
- Torroni A., Stepien G., Hodge J. A., Wallace D. C. Neoplastic transformation is associated with coordinate induction of nuclear and cytoplasmic oxidative phosphorylation genes. J Biol Chem. 1990 Nov 25;265(33):20589–20593. [PubMed] [Google Scholar]
- Uetsuki T., Naito A., Nagata S., Kaziro Y. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem. 1989 Apr 5;264(10):5791–5798. [PubMed] [Google Scholar]
- Wakabayashi-Ito N., Nagata S. Characterization of the regulatory elements in the promoter of the human elongation factor-1 alpha gene. J Biol Chem. 1994 Nov 25;269(47):29831–29837. [PubMed] [Google Scholar]
- Wang F. L., Wang Y., Wong W. K., Liu Y., Addivinola F. J., Liang P., Chen L. B., Kantoff P. W., Pardee A. B. Two differentially expressed genes in normal human prostate tissue and in carcinoma. Cancer Res. 1996 Aug 15;56(16):3634–3637. [PubMed] [Google Scholar]
- Wang H. G., Rapp U. R., Reed J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996 Nov 15;87(4):629–638. doi: 10.1016/s0092-8674(00)81383-5. [DOI] [PubMed] [Google Scholar]
- Zhang H., Zhang R., Liang P. Differential screening of gene expression difference enriched by differential display. Nucleic Acids Res. 1996 Jun 15;24(12):2454–2455. doi: 10.1093/nar/24.12.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]



