Abstract
BACKGROUND: Nitric oxide (NO) plays an important role in numerous reproductive processes. To date, most studies have assessed the role of NO by using nonspecific pharmacological inhibitors of the precursor to NO, nitric oxide synthase (NOS). These pharmacological NOS inhibitors suppress all isoforms of NOS; thus, the precise contribution of each isoform to female reproductive physiology is unknown. The purpose of this study was to determine the specific role of neuronal NOS (nNOS) in the regulation of ovulation in female mice lacking the gene that encodes for nNOS (nNOS-/-). MATERIALS AND METHODS: Ovulation was assessed in wild-type (WT) and nNOS-/- female mice by examining the number of ovarian rupture sites and number of oocytes recovered from the oviducts following mating or exposure to exogenous gonadotropins (i.e., 5 IU pregnant mares serum gonadotropin [PMSG] and 5 IU human chorionic gonadotropin [hCG]). Ovulatory efficiency was determined as the number of ovulated oocytes per number of ovarian rupture sites. To examine whether ovulatory deficits in nNOS-/- mice were due to alternations in central mechanisms, plasma luteinizing hormone (LH) concentrations were assessed in WT and nNOS-/- mice that were challenged with 25 ng of gonadotropin-releasing hormone (GnRH). To determine whether ovulatory deficits in nNOS-/- mice were due to local ovulation processes, nerves innervating the reproductive tract of WT and nNOS-/- females were examined for the presence of nNOS protein. RESULTS: There were substantial fertility deficits in nNOS-/- female mice; the nNOS-/- mice had fewer oocytes in their oviducts following spontaneous and gonadotropin-stimulated ovulation. Pituitary responsiveness to exogenous GnRH challenge was intact in nNOS-/- mice. Dense nNOS protein staining was observed in nerves innervating the reproductive tracts of WT mice. CONCLUSIONS: The reproductive deficits in nNOS-/- females are most likely due to alternations in the transfer of oocytes from the ovaries to the oviducts during ovulation. These results suggest that defects in neuronally derived NO production may contribute to female infertility.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Shlomo I., Kokia E., Jackson M. J., Adashi E. Y., Payne D. W. Interleukin-1 beta stimulates nitrite production in the rat ovary: evidence for heterologous cell-cell interaction and for insulin-mediated regulation of the inducible isoform of nitric oxide synthase. Biol Reprod. 1994 Aug;51(2):310–318. doi: 10.1095/biolreprod51.2.310. [DOI] [PubMed] [Google Scholar]
- Bonello N., McKie K., Jasper M., Andrew L., Ross N., Braybon E., Brännström M., Norman R. J. Inhibition of nitric oxide: effects on interleukin-1 beta-enhanced ovulation rate, steroid hormones, and ovarian leukocyte distribution at ovulation in the rat. Biol Reprod. 1996 Feb;54(2):436–445. doi: 10.1095/biolreprod54.2.436. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
- Burnett A. L., Nelson R. J., Calvin D. C., Liu J. X., Demas G. E., Klein S. L., Kriegsfeld L. J., Dawson V. L., Dawson T. M., Snyder S. H. Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Mol Med. 1996 May;2(3):288–296. [PMC free article] [PubMed] [Google Scholar]
- Cavender J. L., Murdoch W. J. Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol Reprod. 1988 Nov;39(4):989–997. doi: 10.1095/biolreprod39.4.989. [DOI] [PubMed] [Google Scholar]
- Collins T. J., Parkening T. A., Smith E. R. Plasma and pituitary concentrations of LH, FSH and prolactin after injection of GnRH in aged female C57BL/6 mice. Neurobiol Aging. 1981 Summer;2(2):125–131. doi: 10.1016/0197-4580(81)90010-5. [DOI] [PubMed] [Google Scholar]
- Demas G. E., Eliasson M. J., Dawson T. M., Dawson V. L., Kriegsfeld L. J., Nelson R. J., Snyder S. H. Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. Mol Med. 1997 Sep;3(9):610–616. [PMC free article] [PubMed] [Google Scholar]
- Grozdanovic Z., Mayer B., Baumgarten H. G., Brüning G. Nitric oxide synthase-containing nerve fibers and neurons in the genital tract of the female mouse. Cell Tissue Res. 1994 Feb;275(2):355–360. doi: 10.1007/BF00319434. [DOI] [PubMed] [Google Scholar]
- Herdegen T., Brecht S., Mayer B., Leah J., Kummer W., Bravo R., Zimmermann M. Long-lasting expression of JUN and KROX transcription factors and nitric oxide synthase in intrinsic neurons of the rat brain following axotomy. J Neurosci. 1993 Oct;13(10):4130–4145. doi: 10.1523/JNEUROSCI.13-10-04130.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hesla J. S., Preutthipan S., Maguire M. P., Chang T. S., Wallach E. E., Dharmarajan A. M. Nitric oxide modulates human chorionic gonadotropin-induced ovulation in the rabbit. Fertil Steril. 1997 Mar;67(3):548–552. doi: 10.1016/s0015-0282(97)80084-2. [DOI] [PubMed] [Google Scholar]
- Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
- Hurwitz A., Hernandez E. R., Payne D. W., Dharmarajan A. M., Adashi E. Y. Interleukin-1 is both morphogenic and cytotoxic to cultured rat ovarian cells: obligatory role for heterologous, contact-independent cell-cell interaction. Endocrinology. 1992 Oct;131(4):1643–1649. doi: 10.1210/endo.131.4.1396309. [DOI] [PubMed] [Google Scholar]
- Jarrett W. A., Price G. T., Lynn V. J., Burden H. W. NADPH-diaphorase-positive neurons innervating the rat ovary. Neurosci Lett. 1994 Aug 15;177(1-2):47–49. doi: 10.1016/0304-3940(94)90041-8. [DOI] [PubMed] [Google Scholar]
- Lowenstein C. J., Snyder S. H. Purification, cloning, and expression of nitric-oxide synthase. Methods Enzymol. 1994;233:264–269. doi: 10.1016/s0076-6879(94)33030-1. [DOI] [PubMed] [Google Scholar]
- MacMicking J. D., Nathan C., Hom G., Chartrain N., Fletcher D. S., Trumbauer M., Stevens K., Xie Q. W., Sokol K., Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995 May 19;81(4):641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
- Moretto M., López F. J., Negro-Vilar A. Nitric oxide regulates luteinizing hormone-releasing hormone secretion. Endocrinology. 1993 Nov;133(5):2399–2402. doi: 10.1210/endo.133.5.8104781. [DOI] [PubMed] [Google Scholar]
- Nelson R. J., Demas G. E., Huang P. L., Fishman M. C., Dawson V. L., Dawson T. M., Snyder S. H. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995 Nov 23;378(6555):383–386. doi: 10.1038/378383a0. [DOI] [PubMed] [Google Scholar]
- Nelson R. J., Kriegsfeld L. J., Dawson V. L., Dawson T. M. Effects of nitric oxide on neuroendocrine function and behavior. Front Neuroendocrinol. 1997 Oct;18(4):463–491. doi: 10.1006/frne.1997.0156. [DOI] [PubMed] [Google Scholar]
- Powers R. W., Chen L., Russell P. T., Larsen W. J. Gonadotropin-stimulated regulation of blood-follicle barrier is mediated by nitric oxide. Am J Physiol. 1995 Aug;269(2 Pt 1):E290–E298. doi: 10.1152/ajpendo.1995.269.2.E290. [DOI] [PubMed] [Google Scholar]
- Redina O. E., Amstislavsky SYa, Maksimovsky L. F. Induction of superovulation in DD mice at different stages of the oestrous cycle. J Reprod Fertil. 1994 Nov;102(2):263–267. doi: 10.1530/jrf.0.1020263. [DOI] [PubMed] [Google Scholar]
- Rehman J., Chenven E., Brink P., Peterson B., Walcott B., Wen Y. P., Melman A., Christ G. Diminished neurogenic but not pharmacological erections in the 2- to 3-month experimentally diabetic F-344 rat. Am J Physiol. 1997 Apr;272(4 Pt 2):H1960–H1971. doi: 10.1152/ajpheart.1997.272.4.H1960. [DOI] [PubMed] [Google Scholar]
- Rettori V., Belova N., Dees W. L., Nyberg C. L., Gimeno M., McCann S. M. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10130–10134. doi: 10.1073/pnas.90.21.10130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roskams A. J., Bredt D. S., Dawson T. M., Ronnett G. V. Nitric oxide mediates the formation of synaptic connections in developing and regenerating olfactory receptor neurons. Neuron. 1994 Aug;13(2):289–299. doi: 10.1016/0896-6273(94)90347-6. [DOI] [PubMed] [Google Scholar]
- Shukovski L., Tsafriri A. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology. 1994 Nov;135(5):2287–2290. doi: 10.1210/endo.135.5.7525265. [DOI] [PubMed] [Google Scholar]
- Takehara Y., Dharmarajan A. M., Kaufman G., Wallach E. E. Effect of interleukin-1 beta on ovulation in the in vitro perfused rabbit ovary. Endocrinology. 1994 Apr;134(4):1788–1793. doi: 10.1210/endo.134.4.8137743. [DOI] [PubMed] [Google Scholar]
- Wilson R. I., Yanovsky J., Gödecke A., Stevens D. R., Schrader J., Haas H. L. Endothelial nitric oxide synthase and LTP. Nature. 1997 Mar 27;386(6623):338–338. doi: 10.1038/386338a0. [DOI] [PubMed] [Google Scholar]

