Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1998 Feb;4(2):96–108.

Molecular characterization of a dual endothelin-1/Angiotensin II receptor.

N Ruiz-Opazo 1, K Hirayama 1, K Akimoto 1, V L Herrera 1
PMCID: PMC2230307  PMID: 9508787

Abstract

BACKGROUND: The molecular recognition theory (MRT) provides a conceptual framework that could explain the evolution of intermolecular and intramolecular interaction of peptides and proteins. As such, it predicts that binding sites of peptide hormones, and its receptor binding sites were originally encoded by and evolved from complementary strands of genomic DNA. MATERIALS AND METHODS: On the basis of principles underlying the MRT, we screened a rat brain complementary DNA library using an AngII followed by an endothelin-1 (ET-1) antisense oligonucleotide probe, expecting to isolate potential cognate receptors. RESULTS: An identical cDNA clone was isolated independently from both the AngII and ET-1 oligonucleotide screenings. Structural analysis revealed a receptor polypeptide containing a single predicted transmembrane region with distinct ET-1 and AngII putative binding domains. Functional analysis demonstrated ET-1- and AngII-specific binding as well as ET-1- and AngII-induced coupling to a Ca2+ mobilizing transduction system. Amino acid substitutions within the predicted ET-1 binding domain obliterate ET-1 binding while preserving AngII binding, thus defining the structural determinants of ET-1 binding within the dual ET-1/AngII receptor, as well as corroborating the dual nature of the receptor. CONCLUSIONS: Elucidation of the dual ET-1/AngII receptor provides further molecular genetic evidence in support of the molecular recognition theory and identifies for the first time a molecular link between the ET-1 and AngII hormonal systems that could underlie observed similar physiological responses elicited by ET-1 and AngII in different organ systems. The prominent expression of the ET-1/AngII receptor mRNA in brain and heart tissues suggests an important role in cardiovascular function in normal and pathophysiological states.

Full text

PDF
96

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Yang Y. Y., Trzeciak A., Furuichi Y., Miyamoto C. Identification of a domain of ETA receptor required for ligand binding. FEBS Lett. 1992 Oct 19;311(2):179–183. doi: 10.1016/0014-5793(92)81393-z. [DOI] [PubMed] [Google Scholar]
  2. Adams G. A., Rose J. K. Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell. 1985 Jul;41(3):1007–1015. doi: 10.1016/s0092-8674(85)80081-7. [DOI] [PubMed] [Google Scholar]
  3. Baranyi L., Campbell W., Ohshima K., Fujimoto S., Boros M., Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med. 1995 Sep;1(9):894–901. doi: 10.1038/nm0995-894. [DOI] [PubMed] [Google Scholar]
  4. Battistini B., D'Orléans-Juste P., Sirois P. Endothelins: circulating plasma levels and presence in other biologic fluids. Lab Invest. 1993 Jun;68(6):600–628. [PubMed] [Google Scholar]
  5. Blalock J. E. Genetic origins of protein shape and interaction rules. Nat Med. 1995 Sep;1(9):876–878. doi: 10.1038/nm0995-876. [DOI] [PubMed] [Google Scholar]
  6. Bost K. L., Smith E. M., Blalock J. E. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1372–1375. doi: 10.1073/pnas.82.5.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown R. D., Berger K. D., Taylor P. Alpha 1-adrenergic receptor activation mobilizes cellular Ca2+ in a muscle cell line. J Biol Chem. 1984 Jun 25;259(12):7554–7562. [PubMed] [Google Scholar]
  8. Egido J. Vasoactive hormones and renal sclerosis. Kidney Int. 1996 Feb;49(2):578–597. doi: 10.1038/ki.1996.82. [DOI] [PubMed] [Google Scholar]
  9. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  10. Goldstein A., Brutlag D. L. Is there a relationship between DNA sequences encoding peptide ligands and their receptors? Proc Natl Acad Sci U S A. 1989 Jan;86(1):42–45. doi: 10.1073/pnas.86.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gómez-Garre D., Ruiz-Ortega M., Ortego M., Largo R., López-Armada M. J., Plaza J. J., González E., Egido J. Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension. 1996 Apr;27(4):885–892. doi: 10.1161/01.hyp.27.4.885. [DOI] [PubMed] [Google Scholar]
  12. Hashido K., Adachi M., Gamou T., Watanabe T., Furuichi Y., Miyamoto C. Identification of specific intracellular domains of the human ETA receptor required for ligand binding and signal transduction. Cell Mol Biol Res. 1993;39(1):3–12. [PubMed] [Google Scholar]
  13. Hashido K., Gamou T., Adachi M., Tabuchi H., Watanabe T., Furuichi Y., Miyamoto C. Truncation of N-terminal extracellular or C-terminal intracellular domains of human ETA receptor abrogated the binding activity to ET-1. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1241–1248. doi: 10.1016/0006-291x(92)90436-o. [DOI] [PubMed] [Google Scholar]
  14. Herrera V. L., Chobanian A. V., Ruiz-Opazo N. Isoform-specific modulation of Na+, K+-ATPase alpha-subunit gene expression in hypertension. Science. 1988 Jul 8;241(4862):221–223. doi: 10.1126/science.2838907. [DOI] [PubMed] [Google Scholar]
  15. Jurzak M., Pavo I., Fahrenholz F. Lack of interaction of vasopressin with its antisense peptides: a functional and immunological study. J Recept Res. 1993;13(5):881–902. doi: 10.3109/10799899309073699. [DOI] [PubMed] [Google Scholar]
  16. Kambayashi Y., Bardhan S., Takahashi K., Tsuzuki S., Inui H., Hamakubo T., Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem. 1993 Nov 25;268(33):24543–24546. [PubMed] [Google Scholar]
  17. Karne S., Jayawickreme C. K., Lerner M. R. Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores. J Biol Chem. 1993 Sep 5;268(25):19126–19133. [PubMed] [Google Scholar]
  18. Kelly J. M., Trinder D., Phillips P. A., Casley D. J., Kemp B., Mooser V., Johnston C. I. Vasopressin antisense peptide interactions with the V1 receptor. Peptides. 1990 Jul-Aug;11(4):857–862. doi: 10.1016/0196-9781(90)90204-i. [DOI] [PubMed] [Google Scholar]
  19. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  20. Kimura S., Kasuya Y., Sawamura T., Shinmi O., Sugita Y., Yanagisawa M., Goto K., Masaki T. Structure-activity relationships of endothelin: importance of the C-terminal moiety. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1182–1186. doi: 10.1016/s0006-291x(88)80757-5. [DOI] [PubMed] [Google Scholar]
  21. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  22. Lin H. Y., Kaji E. H., Winkel G. K., Ives H. E., Lodish H. F. Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3185–3189. doi: 10.1073/pnas.88.8.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lytle C., Forbush B., 3rd The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem. 1992 Dec 15;267(35):25438–25443. [PubMed] [Google Scholar]
  24. Maggi C. A., Giuliani S., Patacchini R., Santicioli P., Rovero P., Giachetti A., Meli A. The C-terminal hexapeptide, endothelin-(16-21), discriminates between different endothelin receptors. Eur J Pharmacol. 1989 Jul 4;166(1):121–122. doi: 10.1016/0014-2999(89)90693-6. [DOI] [PubMed] [Google Scholar]
  25. Martins V. R., Graner E., Garcia-Abreu J., de Souza S. J., Mercadante A. F., Veiga S. S., Zanata S. M., Neto V. M., Brentani R. R. Complementary hydropathy identifies a cellular prion protein receptor. Nat Med. 1997 Dec;3(12):1376–1382. doi: 10.1038/nm1297-1376. [DOI] [PubMed] [Google Scholar]
  26. Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
  27. Ohkubo H., Kageyama R., Ujihara M., Hirose T., Inayama S., Nakanishi S. Cloning and sequence analysis of cDNA for rat angiotensinogen. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2196–2200. doi: 10.1073/pnas.80.8.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peters C., Braun M., Weber B., Wendland M., Schmidt B., Pohlmann R., Waheed A., von Figura K. Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J. 1990 Nov;9(11):3497–3506. doi: 10.1002/j.1460-2075.1990.tb07558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Powell-Jackson F. D., Macgregor J. Radioimmunoassay of angiotensin II in the rat. J Endocrinol. 1976 Jan;68(1):175–176. doi: 10.1677/joe.0.0680175. [DOI] [PubMed] [Google Scholar]
  30. Rasmussen U. B., Hesch R. D. On antisense peptides: the parathyroid hormone as an experimental example and a critical theoretical view. Biochem Biophys Res Commun. 1987 Dec 31;149(3):930–938. doi: 10.1016/0006-291x(87)90498-0. [DOI] [PubMed] [Google Scholar]
  31. Ruiz-Opazo N., Akimoto K., Herrera V. L. Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory. Nat Med. 1995 Oct;1(10):1074–1081. doi: 10.1038/nm1095-1074. [DOI] [PubMed] [Google Scholar]
  32. Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. doi: 10.1038/348732a0. [DOI] [PubMed] [Google Scholar]
  33. Sandberg K., Ji H., Clark A. J., Shapira H., Catt K. J. Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem. 1992 May 15;267(14):9455–9458. [PubMed] [Google Scholar]
  34. Sasaki K., Yamano Y., Bardhan S., Iwai N., Murray J. J., Hasegawa M., Matsuda Y., Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991 May 16;351(6323):230–233. doi: 10.1038/351230a0. [DOI] [PubMed] [Google Scholar]
  35. Simonson M. S., Dunn M. J. Cellular signaling by peptides of the endothelin gene family. FASEB J. 1990 Sep;4(12):2989–3000. doi: 10.1096/fasebj.4.12.2168326. [DOI] [PubMed] [Google Scholar]
  36. Takai M., Umemura I., Yamasaki K., Watakabe T., Fujitani Y., Oda K., Urade Y., Inui T., Yamamura T., Okada T. A potent and specific agonist, Suc-[Glu9,Ala11,15]-endothelin-1(8-21), IRL 1620, for the ETB receptor. Biochem Biophys Res Commun. 1992 Apr 30;184(2):953–959. doi: 10.1016/0006-291x(92)90683-c. [DOI] [PubMed] [Google Scholar]
  37. Trowbridge I. S. Endocytosis and signals for internalization. Curr Opin Cell Biol. 1991 Aug;3(4):634–641. doi: 10.1016/0955-0674(91)90034-v. [DOI] [PubMed] [Google Scholar]
  38. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  39. de Gasparo M., Whitebread S., Einsle K., Heusser C. Are the antibodies to a peptide complementary to angiotensin II useful to isolate the angiotensin II receptor? Biochem J. 1989 Jul 1;261(1):310–311. doi: 10.1042/bj2610310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Souza S. J., Brentani R. Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J Biol Chem. 1992 Jul 5;267(19):13763–13767. [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES