Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1999 Apr;5(4):211–223.

In vivo analysis of DNase I hypersensitive sites in the human CFTR gene.

D S Moulin 1, A L Manson 1, H N Nuthall 1, D J Smith 1, C Huxley 1, A Harris 1
PMCID: PMC2230319  PMID: 10448643

Abstract

BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand R., Ogilvie D. J., Butler R., Riley J. H., Finniear R. S., Powell S. J., Smith J. C., Markham A. F. A yeast artificial chromosome contig encompassing the cystic fibrosis locus. Genomics. 1991 Jan;9(1):124–130. doi: 10.1016/0888-7543(91)90229-8. [DOI] [PubMed] [Google Scholar]
  2. Becker P., Renkawitz R., Schütz G. Tissue-specific DNaseI hypersensitive sites in the 5'-flanking sequences of the tryptophan oxygenase and the tyrosine aminotransferase genes. EMBO J. 1984 Sep;3(9):2015–2020. doi: 10.1002/j.1460-2075.1984.tb02084.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell K. H., McWhir J., Ritchie W. A., Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996 Mar 7;380(6569):64–66. doi: 10.1038/380064a0. [DOI] [PubMed] [Google Scholar]
  4. Chalkley G., Harris A. Lymphocyte mRNA as a resource for detection of mutations and polymorphisms in the CF gene. J Med Genet. 1991 Nov;28(11):777–780. doi: 10.1136/jmg.28.11.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Chou J. L., Rozmahel R., Tsui L. C. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1991 Dec 25;266(36):24471–24476. [PubMed] [Google Scholar]
  7. Cibelli J. B., Stice S. L., Golueke P. J., Kane J. J., Jerry J., Blackwell C., Ponce de León F. A., Robl J. M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science. 1998 May 22;280(5367):1256–1258. doi: 10.1126/science.280.5367.1256. [DOI] [PubMed] [Google Scholar]
  8. Crawford I., Maloney P. C., Zeitlin P. L., Guggino W. B., Hyde S. C., Turley H., Gatter K. C., Harris A., Higgins C. F. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9262–9266. doi: 10.1073/pnas.88.20.9262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delaney S. J., Koopman P., Lovelock P. K., Wainwright B. J. Alternative splicing of the first nucleotide binding fold of CFTR in mouse testes is associated with specific stages of spermatogenesis. Genomics. 1994 Apr;20(3):517–518. doi: 10.1006/geno.1994.1214. [DOI] [PubMed] [Google Scholar]
  10. Delaney S. J., Rich D. P., Thomson S. A., Hargrave M. R., Lovelock P. K., Welsh M. J., Wainwright B. J. Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nat Genet. 1993 Aug;4(4):426–431. doi: 10.1038/ng0893-426. [DOI] [PubMed] [Google Scholar]
  11. Denamur E., Chehab F. F. Analysis of the mouse and rat CFTR promoter regions. Hum Mol Genet. 1994 Jul;3(7):1089–1094. doi: 10.1093/hmg/3.7.1089. [DOI] [PubMed] [Google Scholar]
  12. Denning G. M., Ostedgaard L. S., Cheng S. H., Smith A. E., Welsh M. J. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J Clin Invest. 1992 Jan;89(1):339–349. doi: 10.1172/JCI115582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engelhardt J. F., Yankaskas J. R., Ernst S. A., Yang Y., Marino C. R., Boucher R. C., Cohn J. A., Wilson J. M. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992 Nov;2(3):240–248. doi: 10.1038/ng1192-240. [DOI] [PubMed] [Google Scholar]
  14. Harris A., Chalkley G., Goodman S., Coleman L. Expression of the cystic fibrosis gene in human development. Development. 1991 Sep;113(1):305–310. doi: 10.1242/dev.113.1.305. [DOI] [PubMed] [Google Scholar]
  15. Harris A. Towards an ovine model of cystic fibrosis. Hum Mol Genet. 1997 Dec;6(13):2191–2194. doi: 10.1093/hmg/6.13.2191. [DOI] [PubMed] [Google Scholar]
  16. Higgs D. R., Wood W. G., Jarman A. P., Sharpe J., Lida J., Pretorius I. M., Ayyub H. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev. 1990 Sep;4(9):1588–1601. doi: 10.1101/gad.4.9.1588. [DOI] [PubMed] [Google Scholar]
  17. Hull J., Shackleton S., Harris A. Analysis of mutations and alternative splicing patterns in the CFTR gene using mRNA derived from nasal epithelial cells. Hum Mol Genet. 1994 Jul;3(7):1141–1146. doi: 10.1093/hmg/3.7.1141. [DOI] [PubMed] [Google Scholar]
  18. Hyde K., Reid C. J., Tebbutt S. J., Weide L., Hollingsworth M. A., Harris A. The cystic fibrosis transmembrane conductance regulator as a marker of human pancreatic duct development. Gastroenterology. 1997 Sep;113(3):914–919. doi: 10.1016/s0016-5085(97)70187-2. [DOI] [PubMed] [Google Scholar]
  19. Koh J., Sferra T. J., Collins F. S. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem. 1993 Jul 25;268(21):15912–15921. [PubMed] [Google Scholar]
  20. Manson A. L., Trezise A. E., MacVinish L. J., Kasschau K. D., Birchall N., Episkopou V., Vassaux G., Evans M. J., Colledge W. H., Cuthbert A. W. Complementation of null CF mice with a human CFTR YAC transgene. EMBO J. 1997 Jul 16;16(14):4238–4249. doi: 10.1093/emboj/16.14.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  22. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  23. Smith A. N., Barth M. L., McDowell T. L., Moulin D. S., Nuthall H. N., Hollingsworth M. A., Harris A. A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1996 Apr 26;271(17):9947–9954. doi: 10.1074/jbc.271.17.9947. [DOI] [PubMed] [Google Scholar]
  24. Smith A. N., Wardle C. J., Harris A. Characterization of DNASE I hypersensitive sites in the 120kb 5' to the CFTR gene. Biochem Biophys Res Commun. 1995 Jun 6;211(1):274–281. doi: 10.1006/bbrc.1995.1807. [DOI] [PubMed] [Google Scholar]
  25. Strong T. V., Boehm K., Collins F. S. Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest. 1994 Jan;93(1):347–354. doi: 10.1172/JCI116966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tebbutt S. J., Wardle C. J., Hill D. F., Harris A. Molecular analysis of the ovine cystic fibrosis transmembrane conductance regulator gene. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2293–2297. doi: 10.1073/pnas.92.6.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tizzano E. F., Silver M. M., Chitayat D., Benichou J. C., Buchwald M. Differential cellular expression of cystic fibrosis transmembrane regulator in human reproductive tissues. Clues for the infertility in patients with cystic fibrosis. Am J Pathol. 1994 May;144(5):906–914. [PMC free article] [PubMed] [Google Scholar]
  28. Trezise A. E., Buchwald M., Higgins C. F. Testis-specific, alternative splicing of rodent CFTR mRNA. Hum Mol Genet. 1993 Jun;2(6):801–802. doi: 10.1093/hmg/2.6.801. [DOI] [PubMed] [Google Scholar]
  29. Trezise A. E., Buchwald M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature. 1991 Oct 3;353(6343):434–437. doi: 10.1038/353434a0. [DOI] [PubMed] [Google Scholar]
  30. Trezise A. E., Chambers J. A., Wardle C. J., Gould S., Harris A. Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet. 1993 Mar;2(3):213–218. doi: 10.1093/hmg/2.3.213. [DOI] [PubMed] [Google Scholar]
  31. Trezise A. E., Linder C. C., Grieger D., Thompson E. W., Meunier H., Griswold M. D., Buchwald M. CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nat Genet. 1993 Feb;3(2):157–164. doi: 10.1038/ng0293-157. [DOI] [PubMed] [Google Scholar]
  32. Vuillaumier S., Dixmeras I., Messaï H., Lapouméroulie C., Lallemand D., Gekas J., Chehab F. F., Perret C., Elion J., Denamur E. Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation. Biochem J. 1997 Nov 1;327(Pt 3):651–662. doi: 10.1042/bj3270651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vuillaumier S., Kaltenboeck B., Lecointre G., Lehn P., Denamur E. Phylogenetic analysis of cystic fibrosis transmembrane conductance regulator gene in mammalian species argues for the development of a rabbit model for cystic fibrosis. Mol Biol Evol. 1997 Apr;14(4):372–380. doi: 10.1093/oxfordjournals.molbev.a025773. [DOI] [PubMed] [Google Scholar]
  34. Vyas P., Vickers M. A., Simmons D. L., Ayyub H., Craddock C. F., Higgs D. R. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell. 1992 May 29;69(5):781–793. doi: 10.1016/0092-8674(92)90290-s. [DOI] [PubMed] [Google Scholar]
  35. White N. L., Higgins C. F., Trezise A. E. Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes. Hum Mol Genet. 1998 Mar;7(3):363–369. doi: 10.1093/hmg/7.3.363. [DOI] [PubMed] [Google Scholar]
  36. Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997 Feb 27;385(6619):810–813. doi: 10.1038/385810a0. [DOI] [PubMed] [Google Scholar]
  37. Yoshimura K., Nakamura H., Trapnell B. C., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. The cystic fibrosis gene has a "housekeeping"-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem. 1991 May 15;266(14):9140–9144. [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES