Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1998 Aug;4(8):515–524.

High concentration of L-arginine suppresses nitric oxide synthase activity and produces reactive oxygen species in NB9 human neuroblastoma cells.

S Todoroki 1, S Goto 1, Y Urata 1, K Komatsu 1, K Sumikawa 1, T Ogura 1, I Matsuda 1, T Kondo 1
PMCID: PMC2230401  PMID: 9742507

Abstract

Hereditary argininemia manifests as neurological disturbance and mental retardation, features not observed in other amino acidemias. The cytotoxic effect of a high concentration of L-arginine (L-Arg) was investigated using NB9 human neuroblastoma cells (NB9), which express neuronal nitric oxide synthase (nNOS). When the concentration of L-Arg in the medium increased from 50 microM to 2 mM after incubation for 48 hr, the intracellular concentration of L-Arg increased from 68.0 +/- 1 pmol/10(6) cells to 1310.0 +/- 5 pmol/10(6) cells and that of L-citrulline (L-Cit) from undetectable levels to 47.1 +/- 0.2 pmol/10(6) cells (mean +/- SD of three independent analyses). This increase in intracellular L-Arg levels caused a decrease in NOS activity by approximately 71%. Flow cytometric analysis showed that reactive oxygen species (ROS) are produced in NB9 exposed to 2 mM L-Arg. The production of ROS was abolished by a NOS inhibitor, NG-nitro-L arginine-methylester. Production of ROS was also observed when NB9 were treated with L-Cit for 48 hr. To investigate the effect of L-Cit on the activity of NOS, a kinetic study on nNOS was conducted using cellular extracts from NB9. The apparent Km value of nNOS for L-Arg was 8.4 microM, with a Vmax value of 8.2 pmol/min/mg protein. L-Cit competitively inhibited NOS activity, as indicated by an apparent Ki value of 65 nM. These results suggest that L-Cit formed by nNOS in L-Arg-loaded neuronal cells inhibits NOS activity and nNOS in these L-Arg-loaded cells functions as a NADPH oxidase to produce ROS, which may cause neurotoxicity in argininemia.

Full text

PDF
515

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
  2. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  3. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  4. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  5. Culcasi M., Lafon-Cazal M., Pietri S., Bockaert J. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem. 1994 Apr 29;269(17):12589–12593. [PubMed] [Google Scholar]
  6. Dawson T. M., Bredt D. S., Fotuhi M., Hwang P. M., Snyder S. H. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7797–7801. doi: 10.1073/pnas.88.17.7797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galea E., Feinstein D. L., Reis D. J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10945–10949. doi: 10.1073/pnas.89.22.10945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gally J. A., Montague P. R., Reeke G. N., Jr, Edelman G. M. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A. 1990 May;87(9):3547–3551. doi: 10.1073/pnas.87.9.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gong J., Traganos F., Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem. 1994 May 1;218(2):314–319. doi: 10.1006/abio.1994.1184. [DOI] [PubMed] [Google Scholar]
  10. Greenwood M. T., Guo Y., Kumar U., Beauséjours S., Hussain S. N. Distribution of protein inhibitor of neuronal nitric oxide synthase in rat brain. Biochem Biophys Res Commun. 1997 Sep 18;238(2):617–621. doi: 10.1006/bbrc.1997.7361. [DOI] [PubMed] [Google Scholar]
  11. Hall A. V., Antoniou H., Wang Y., Cheung A. H., Arbus A. M., Olson S. L., Lu W. C., Kau C. L., Marsden P. A. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem. 1994 Dec 30;269(52):33082–33090. [PubMed] [Google Scholar]
  12. Haraguchi Y., Aparicio J. M., Takiguchi M., Akaboshi I., Yoshino M., Mori M., Matsuda I. Molecular basis of argininemia. Identification of two discrete frame-shift deletions in the liver-type arginase gene. J Clin Invest. 1990 Jul;86(1):347–350. doi: 10.1172/JCI114707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haraguchi Y., Takiguchi M., Amaya Y., Kawamoto S., Matsuda I., Mori M. Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Proc Natl Acad Sci U S A. 1987 Jan;84(2):412–415. doi: 10.1073/pnas.84.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. doi: 10.1042/bj2810627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
  16. Iwanaga M., Mori K., Iida T., Urata Y., Matsuo T., Yasunaga A., Shibata S., Kondo T. Nuclear factor kappa B dependent induction of gamma glutamylcysteine synthetase by ionizing radiation in T98G human glioblastoma cells. Free Radic Biol Med. 1998 May;24(7-8):1256–1268. doi: 10.1016/s0891-5849(97)00443-7. [DOI] [PubMed] [Google Scholar]
  17. Jiang K., Kim S., Murphy S., Song D., Pastuszko A. Effect of hypoxia and reoxygenation on regional activity of nitric oxide synthase in brain of newborn piglets. Neurosci Lett. 1996 Mar 15;206(2-3):199–203. doi: 10.1016/s0304-3940(96)12466-6. [DOI] [PubMed] [Google Scholar]
  18. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem. 1995 Jul 14;270(28):16483–16486. doi: 10.1074/jbc.270.28.16483. [DOI] [PubMed] [Google Scholar]
  19. Marescau B., De Deyn P. P., Lowenthal A., Qureshi I. A., Antonozzi I., Bachmann C., Cederbaum S. D., Cerone R., Chamoles N., Colombo J. P. Guanidino compound analysis as a complementary diagnostic parameter for hyperargininemia: follow-up of guanidino compound levels during therapy. Pediatr Res. 1990 Mar;27(3):297–303. doi: 10.1203/00006450-199003000-00020. [DOI] [PubMed] [Google Scholar]
  20. Pou S., Pou W. S., Bredt D. S., Snyder S. H., Rosen G. M. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176. [PubMed] [Google Scholar]
  21. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986 Aug 29;46(5):705–716. doi: 10.1016/0092-8674(86)90346-6. [DOI] [PubMed] [Google Scholar]
  22. Simmons M. L., Murphy S. Induction of nitric oxide synthase in glial cells. J Neurochem. 1992 Sep;59(3):897–905. doi: 10.1111/j.1471-4159.1992.tb08328.x. [DOI] [PubMed] [Google Scholar]
  23. Sparkes R. S., Dizikes G. J., Klisak I., Grody W. W., Mohandas T., Heinzmann C., Zollman S., Lusis A. J., Cederbaum S. D. The gene for human liver arginase (ARG1) is assigned to chromosome band 6q23. Am J Hum Genet. 1986 Aug;39(2):186–193. [PMC free article] [PubMed] [Google Scholar]
  24. Takiguchi M., Haraguchi Y., Mori M. Human liver-type arginase gene: structure of the gene and analysis of the promoter region. Nucleic Acids Res. 1988 Sep 26;16(18):8789–8802. doi: 10.1093/nar/16.18.8789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Uchino T., Haraguchi Y., Aparicio J. M., Mizutani N., Higashikawa M., Naitoh H., Mori M., Matsuda I. Three novel mutations in the liver-type arginase gene in three unrelated Japanese patients with argininemia. Am J Hum Genet. 1992 Dec;51(6):1406–1412. [PMC free article] [PubMed] [Google Scholar]
  26. Uchino T., Snyderman S. E., Lambert M., Qureshi I. A., Shapira S. K., Sansaricq C., Smit L. M., Jakobs C., Matsuda I. Molecular basis of phenotypic variation in patients with argininemia. Hum Genet. 1995 Sep;96(3):255–260. doi: 10.1007/BF00210403. [DOI] [PubMed] [Google Scholar]
  27. Urata Y., Yamamoto H., Goto S., Tsushima H., Akazawa S., Yamashita S., Nagataki S., Kondo T. Long exposure to high glucose concentration impairs the responsive expression of gamma-glutamylcysteine synthetase by interleukin-1beta and tumor necrosis factor-alpha in mouse endothelial cells. J Biol Chem. 1996 Jun 21;271(25):15146–15152. doi: 10.1074/jbc.271.25.15146. [DOI] [PubMed] [Google Scholar]
  28. Yu Y., Terada K., Nagasaki A., Takiguchi M., Mori M. Preparation of recombinant argininosuccinate synthetase and argininosuccinate lyase: expression of the enzymes in rat tissues. J Biochem. 1995 May;117(5):952–957. doi: 10.1093/oxfordjournals.jbchem.a124826. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES