Abstract
Glomerular permeability for macromolecules depends partially on proper attachment of the glomerular epithelial cells (GEC) to the glomerular basement membrane (GBM). The latter requires integrity of the actin cytoskeleton, which in turn is regulated by specific actin-associated proteins. Since several glomerulopathies characterized by heavy proteinuria are associated with increased glomerular tumor necrosis factor alpha (TNF-alpha) expression, we studied the interaction of TNF-alpha with the actin cytoskeleton of cultured rat GEC. Incubation of GEC with 10 ng/ml TNF-alpha for variable time periods ranging from 15 min to 24 hr demonstrated a marked accentuation and redistribution of actin microfilaments, as shown by direct fluorescence analysis and confocal laser scanning microscopy. Quantitative biochemical determination of the G/total-actin ratio confirmed the above observations. Indeed, this ratio was significantly reduced, indicating substantial polymerization of G-actin and formation of F-actin. Concurrently, TNF-alpha rapidly induced tyrosine phosphorylation of both paxillin and focal adhesion kinase, without affecting the expression levels of these two proteins. In addition, tyrosine phosphorylation of vinculin became evident, indicating involvement of this focal adhesion marker in the observed actin reorganization. Inhibition of tyrosine phosphorylation by genistein prevented the reorganization of the actin cytoskeleton by TNF-alpha. We conclude that TNF-alpha induces substantial reorganization of actin cytoskeleton and focal adhesions. These effects occur simultaneously, with a prompt TNF-alpha-induced tyrosine phosphorylation of paxillin and focal adhesion kinase, indicating that these proteins, known to regulate actin polymerization and formation of focal adhesions, may be directly involved in the mechanism controlling the observed actin redistribution. These findings suggest that the observed TNF-alpha-actin cytoskeleton interactions may relate to the pathogenesis of glomerulopathies with heavy proteinuria, in which increased glomerular expression of TNF-alpha is associated with disturbances in the attachment of podocytes to the GBM.
Full text
PDF![382](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/eadb838634a5/molmed00006-0040.png)
![383](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/e4f2849ea54f/molmed00006-0041.png)
![384](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/d7af81bd011f/molmed00006-0042.png)
![385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/c638fa7f8fd1/molmed00006-0043.png)
![386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/82405ed04ca8/molmed00006-0044.png)
![387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/26a67ae71283/molmed00006-0045.png)
![388](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/4977e2d99610/molmed00006-0046.png)
![389](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/9d5d991a5230/molmed00006-0047.png)
![390](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/2dda7659d69c/molmed00006-0048.png)
![391](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/118a45cd5c1c/molmed00006-0049.png)
![392](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a05/2230436/94b874622209/molmed00006-0050.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Ogawara H. Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. 1991;201:362–370. doi: 10.1016/0076-6879(91)01032-w. [DOI] [PubMed] [Google Scholar]
- Bellis S. L., Miller J. T., Turner C. E. Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem. 1995 Jul 21;270(29):17437–17441. doi: 10.1074/jbc.270.29.17437. [DOI] [PubMed] [Google Scholar]
- Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
- Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
- Burridge K., Turner C. E., Romer L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992 Nov;119(4):893–903. doi: 10.1083/jcb.119.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camussi G., Mariano F., Biancone L., Montrucchio G., Vercellone A. Effect of cytokines on the cytoskeleton of resident glomerular cells. Kidney Int Suppl. 1993 Jan;39:S32–S36. [PubMed] [Google Scholar]
- Chrzanowska-Wodnicka M., Burridge K. Tyrosine phosphorylation is involved in reorganization of the actin cytoskeleton in response to serum or LPA stimulation. J Cell Sci. 1994 Dec;107(Pt 12):3643–3654. doi: 10.1242/jcs.107.12.3643. [DOI] [PubMed] [Google Scholar]
- Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
- Craig S. W., Johnson R. P. Assembly of focal adhesions: progress, paradigms, and portents. Curr Opin Cell Biol. 1996 Feb;8(1):74–85. doi: 10.1016/s0955-0674(96)80051-2. [DOI] [PubMed] [Google Scholar]
- Drenckhahn D., Franke R. P. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest. 1988 Nov;59(5):673–682. [PubMed] [Google Scholar]
- Faulstich H., Merkler I., Blackholm H., Stournaras C. Nucleotide in monomeric actin regulates the reactivity of the thiol groups. Biochemistry. 1984 Apr 10;23(8):1608–1612. doi: 10.1021/bi00303a004. [DOI] [PubMed] [Google Scholar]
- Flinn H. M., Ridley A. J. Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin. J Cell Sci. 1996 May;109(Pt 5):1133–1141. doi: 10.1242/jcs.109.5.1133. [DOI] [PubMed] [Google Scholar]
- Gumbiner B. M. Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron. 1993 Oct;11(4):551–564. doi: 10.1016/0896-6273(93)90068-3. [DOI] [PubMed] [Google Scholar]
- Gómez-Chiarri M., Ortíz A., Lerma J. L., López-Armada M. J., Mampaso F., González E., Egido J. Involvement of tumor necrosis factor and platelet-activating factor in the pathogenesis of experimental nephrosis in rats. Lab Invest. 1994 Apr;70(4):449–459. [PubMed] [Google Scholar]
- Katsantonis J., Tosca A., Koukouritaki S. B., Theodoropoulos P. A., Gravanis A., Stournaras C. Differences in the G/total actin ratio and microfilament stability between normal and malignant human keratinocytes. Cell Biochem Funct. 1994 Dec;12(4):267–274. doi: 10.1002/cbf.290120407. [DOI] [PubMed] [Google Scholar]
- Khan M. A., Okumura N., Okada M., Kobayashi S., Nakagawa H. Nerve growth factor stimulates tyrosine phosphorylation of paxillin in PC12h cells. FEBS Lett. 1995 Apr 3;362(2):201–204. doi: 10.1016/0014-5793(95)00250-d. [DOI] [PubMed] [Google Scholar]
- Koukouritaki S. B., Margioris A. N., Gravanis A., Hartig R., Stournaras C. Dexamethasone induces rapid actin assembly in human endometrial cells without affecting its synthesis. J Cell Biochem. 1997 Jun 15;65(4):492–500. doi: 10.1002/(sici)1097-4644(19970615)65:4<492::aid-jcb5>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Koukouritaki S. B., Theodoropoulos P. A., Margioris A. N., Gravanis A., Stournaras C. Dexamethasone alters rapidly actin polymerization dynamics in human endometrial cells: evidence for nongenomic actions involving cAMP turnover. J Cell Biochem. 1996 Aug;62(2):251–261. doi: 10.1002/(SICI)1097-4644(199608)62:2%3C251::AID-JCB13%3E3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Kriz W., Elger M., Nagata M., Kretzler M., Uiker S., Koeppen-Hageman I., Tenschert S., Lemley K. V. The role of podocytes in the development of glomerular sclerosis. Kidney Int Suppl. 1994 Feb;45:S64–S72. [PubMed] [Google Scholar]
- Lipfert L., Haimovich B., Schaller M. D., Cobb B. S., Parsons J. T., Brugge J. S. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol. 1992 Nov;119(4):905–912. doi: 10.1083/jcb.119.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Z. Y., Ganju R. K., Wang J. F., Ona M. A., Hatch W. C., Zheng T., Avraham S., Gill P., Groopman J. E. Cytokine signaling through the novel tyrosine kinase RAFTK in Kaposi's sarcoma cells. J Clin Invest. 1997 Apr 1;99(7):1798–1804. doi: 10.1172/JCI119344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melamed I., Downey G. P., Roifman C. M. Tyrosine phosphorylation is essential for microfilament assembly in B lymphocytes. Biochem Biophys Res Commun. 1991 May 15;176(3):1424–1429. doi: 10.1016/0006-291x(91)90445-d. [DOI] [PubMed] [Google Scholar]
- Melamed I., Turner C. E., Aktories K., Kaplan D. R., Gelfand E. W. Nerve growth factor triggers microfilament assembly and paxillin phosphorylation in human B lymphocytes. J Exp Med. 1995 Mar 1;181(3):1071–1079. doi: 10.1084/jem.181.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moustakas A., Stournaras C. Regulation of actin organisation by TGF-beta in H-ras-transformed fibroblasts. J Cell Sci. 1999 Apr;112(Pt 8):1169–1179. doi: 10.1242/jcs.112.8.1169. [DOI] [PubMed] [Google Scholar]
- Moustakas A., Theodoropoulos P. A., Gravanis A., Häussinger D., Stournaras C. The cytoskeleton in cell volume regulation. Contrib Nephrol. 1998;123:121–134. doi: 10.1159/000059925. [DOI] [PubMed] [Google Scholar]
- Neale T. J., Rüger B. M., Macaulay H., Dunbar P. R., Hasan Q., Bourke A., Murray-McIntosh R. P., Kitching A. R. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am J Pathol. 1995 Jun;146(6):1444–1454. [PMC free article] [PubMed] [Google Scholar]
- Papakonstanti E. A., Bakogeorgou E., Castanas E., Emmanouel D. S., Hartig R., Stournaras C. Early alterations of actin cytoskeleton in OK cells by opioids. J Cell Biochem. 1998 Jul 1;70(1):60–69. doi: 10.1002/(sici)1097-4644(19980701)70:1<60::aid-jcb7>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Papakonstanti E. A., Emmanouel D. S., Gravanis A., Stournaras C. Na+/Pi co-transport alters rapidly cytoskeletal protein polymerization dynamics in opossum kidney cells. Biochem J. 1996 Apr 1;315(Pt 1):241–247. doi: 10.1042/bj3150241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pumiglia K. M., Lau L. F., Huang C. K., Burroughs S., Feinstein M. B. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). Biochem J. 1992 Sep 1;286(Pt 2):441–449. doi: 10.1042/bj2860441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rafiee P., Lee J. K., Leung C. C., Raffin T. A. TNF-alpha induces tyrosine phosphorylation of mitogen-activated protein kinase in adherent human neutrophils. J Immunol. 1995 May 1;154(9):4785–4792. [PubMed] [Google Scholar]
- Rankin S., Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. J Biol Chem. 1994 Jan 7;269(1):704–710. [PubMed] [Google Scholar]
- Rennke H. G. How does glomerular epithelial cell injury contribute to progressive glomerular damage? Kidney Int Suppl. 1994 Feb;45:S58–S63. [PubMed] [Google Scholar]
- Richardson C. A., Gordon K. L., Couser W. G., Bomsztyk K. IL-1 beta increases laminin B2 chain mRNA levels and activates NF-kappa B in rat glomerular epithelial cells. Am J Physiol. 1995 Feb;268(2 Pt 2):F273–F278. doi: 10.1152/ajprenal.1995.268.2.F273. [DOI] [PubMed] [Google Scholar]
- Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
- Rosales C., O'Brien V., Kornberg L., Juliano R. Signal transduction by cell adhesion receptors. Biochim Biophys Acta. 1995 Jul 28;1242(1):77–98. doi: 10.1016/0304-419x(95)00005-z. [DOI] [PubMed] [Google Scholar]
- Rozengurt E. Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes. Cancer Surv. 1995;24:81–96. [PubMed] [Google Scholar]
- Savin V. J., Sharma R., Sharma M., McCarthy E. T., Swan S. K., Ellis E., Lovell H., Warady B., Gunwar S., Chonko A. M. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996 Apr 4;334(14):878–883. doi: 10.1056/NEJM199604043341402. [DOI] [PubMed] [Google Scholar]
- Schaller M. D., Parsons J. T. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol. 1994 Oct;6(5):705–710. doi: 10.1016/0955-0674(94)90097-3. [DOI] [PubMed] [Google Scholar]
- Seufferlein T., Rozengurt E. Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin, rearrangement of the actin cytoskeleton and focal contact assembly. Requirement of p21rho in the signaling pathway. J Biol Chem. 1995 Oct 13;270(41):24343–24351. doi: 10.1074/jbc.270.41.24343. [DOI] [PubMed] [Google Scholar]
- Tabibzadeh S., Kong Q. F., Kapur S., Satyaswaroop P. G., Aktories K. Tumour necrosis factor-alpha-mediated dyscohesion of epithelial cells is associated with disordered expression of cadherin/beta-catenin and disassembly of actin filaments. Hum Reprod. 1995 Apr;10(4):994–1004. doi: 10.1093/oxfordjournals.humrep.a136084. [DOI] [PubMed] [Google Scholar]
- Tachibana K., Sato T., D'Avirro N., Morimoto C. Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J Exp Med. 1995 Oct 1;182(4):1089–1099. doi: 10.1084/jem.182.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tapon N., Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol. 1997 Feb;9(1):86–92. doi: 10.1016/s0955-0674(97)80156-1. [DOI] [PubMed] [Google Scholar]
- Theodoropoulos P. A., Stournaras C., Stoll B., Markogiannakis E., Lang F., Gravanis A., Häussinger D. Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases actin mRNA levels. FEBS Lett. 1992 Oct 26;311(3):241–245. doi: 10.1016/0014-5793(92)81111-x. [DOI] [PubMed] [Google Scholar]
- Turner C. E., Glenney J. R., Jr, Burridge K. Paxillin: a new vinculin-binding protein present in focal adhesions. J Cell Biol. 1990 Sep;111(3):1059–1068. doi: 10.1083/jcb.111.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner C. E., Schaller M. D., Parsons J. T. Tyrosine phosphorylation of the focal adhesion kinase pp125FAK during development: relation to paxillin. J Cell Sci. 1993 Jul;105(Pt 3):637–645. doi: 10.1242/jcs.105.3.637. [DOI] [PubMed] [Google Scholar]
- Wardle N. Minimal-change nephropathy: how does the immune system affect the glomerulus. Nephrol Dial Transplant. 1993;8(8):787–787. doi: 10.1093/ndt/8.8.787. [DOI] [PubMed] [Google Scholar]
- Wójciak-Stothard B., Entwistle A., Garg R., Ridley A. J. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol. 1998 Jul;176(1):150–165. doi: 10.1002/(SICI)1097-4652(199807)176:1<150::AID-JCP17>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 1997 Feb;9(1):76–85. doi: 10.1016/s0955-0674(97)80155-x. [DOI] [PubMed] [Google Scholar]
- Yap A. S., Keast J. R., Manley S. W. Thyroid cell spreading and focal adhesion formation depend upon protein tyrosine phosphorylation and actin microfilaments. Exp Cell Res. 1994 Feb;210(2):306–314. doi: 10.1006/excr.1994.1043. [DOI] [PubMed] [Google Scholar]
- Zachary I., Sinnett-Smith J., Turner C. E., Rozengurt E. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem. 1993 Oct 15;268(29):22060–22065. [PubMed] [Google Scholar]