Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1999 Jul;5(7):459–470.

A Plasmodium vivax vaccine candidate displays limited allele polymorphism, which does not restrict recognition by antibodies.

I S Soares 1, J W Barnwell 1, M U Ferreira 1, M Gomes Da Cunha 1, J P Laurino 1, B A Castilho 1, M M Rodrigues 1
PMCID: PMC2230447  PMID: 10449807

Abstract

BACKGROUND: The 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)) has been suggested as candidate for part of a subunit vaccine against malaria. A major concern in vaccine development is the polymorphism observed in different plasmodial strains. The present study examined the extension and immunological relevance of the allelic polymorphism of the MSP1(19) from Plasmodium vivax, a major human malaria parasite. MATERIALS AND METHODS: We cloned and sequenced 88 gene fragments representing the MSP1(19) from 28 Brazilian isolates of P. vivax. Subsequently, we evaluated the reactivity of rabbit polyclonal antibodies, a monoclonal antibody, and a panel of 80 human sera to bacterial and yeast recombinant proteins representing the two allelic forms of P. vivax MSP1(19) described thus far. RESULTS: We observed that DNA sequences encoding MSP1(19) were not as variable as the equivalent region of other species of Plasmodium, being conserved among Brazilian isolates of P. vivax. Also, we found that antibodies are directed mainly to conserved epitopes present in both allelic forms of the protein. CONCLUSIONS: Our findings suggest that the use of MSP1(19) as part of a subunit vaccine against P. vivax might be greatly facilitated by the limited genetic polymorphism and predominant recognition of conserved epitopes by antibodies.

Full text

PDF
459

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnwell J. W., Galinski M. R., DeSimone S. G., Perler F., Ingravallo P. Plasmodium vivax, P. cynomolgi, and P. knowlesi: identification of homologue proteins associated with the surface of merozoites. Exp Parasitol. 1999 Mar;91(3):238–249. doi: 10.1006/expr.1998.4372. [DOI] [PubMed] [Google Scholar]
  2. Blackman M. J., Heidrich H. G., Donachie S., McBride J. S., Holder A. A. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med. 1990 Jul 1;172(1):379–382. doi: 10.1084/jem.172.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burns J. M., Jr, Parke L. A., Daly T. M., Cavacini L. A., Weidanz W. P., Long C. A. A protective monoclonal antibody recognizes a variant-specific epitope in the precursor of the major merozoite surface antigen of the rodent malarial parasite Plasmodium yoelii. J Immunol. 1989 Apr 15;142(8):2835–2840. [PubMed] [Google Scholar]
  4. Camargo L. M., dal Colletto G. M., Ferreira M. U., Gurgel S. de M., Escobar A. L., Marques A., Krieger H., Camargo E. P., da Silva L. H. Hypoendemic malaria in Rondonia (Brazil, western Amazon region): seasonal variation and risk groups in an urban locality. Am J Trop Med Hyg. 1996 Jul;55(1):32–38. doi: 10.4269/ajtmh.1996.55.32. [DOI] [PubMed] [Google Scholar]
  5. Chang S. P., Gibson H. L., Lee-Ng C. T., Barr P. J., Hui G. S. A carboxyl-terminal fragment of Plasmodium falciparum gp195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J Immunol. 1992 Jul 15;149(2):548–555. [PubMed] [Google Scholar]
  6. Chappel J. A., Holder A. A. Monoclonal antibodies that inhibit Plasmodium falciparum invasion in vitro recognise the first growth factor-like domain of merozoite surface protein-1. Mol Biochem Parasitol. 1993 Aug;60(2):303–311. doi: 10.1016/0166-6851(93)90141-j. [DOI] [PubMed] [Google Scholar]
  7. Cooper J. A., Cooper L. T., Saul A. J. Mapping of the region predominantly recognized by antibodies to the Plasmodium falciparum merozoite surface antigen MSA 1. Mol Biochem Parasitol. 1992 Apr;51(2):301–312. doi: 10.1016/0166-6851(92)90080-4. [DOI] [PubMed] [Google Scholar]
  8. Couillin I., Culmann-Penciolelli B., Gomard E., Choppin J., Levy J. P., Guillet J. G., Saragosti S. Impaired cytotoxic T lymphocyte recognition due to genetic variations in the main immunogenic region of the human immunodeficiency virus 1 NEF protein. J Exp Med. 1994 Sep 1;180(3):1129–1134. doi: 10.1084/jem.180.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daly T. M., Burns J. M., Jr, Long C. A. Comparison of the carboxy-terminal, cysteine-rich domain of the merozoite surface protein-1 from several strains of Plasmodium yoelii. Mol Biochem Parasitol. 1992 Jun;52(2):279–282. doi: 10.1016/0166-6851(92)90061-n. [DOI] [PubMed] [Google Scholar]
  10. Daly T. M., Long C. A. A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infect Immun. 1993 Jun;61(6):2462–2467. doi: 10.1128/iai.61.6.2462-2467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daly T. M., Long C. A. Humoral response to a carboxyl-terminal region of the merozoite surface protein-1 plays a predominant role in controlling blood-stage infection in rodent malaria. J Immunol. 1995 Jul 1;155(1):236–243. [PubMed] [Google Scholar]
  12. Devey M. E., Bleasdale K., Lee S., Rath S. Determination of the functional affinity of IgG1 and IgG4 antibodies to tetanus toxoid by isotype-specific solid-phase assays. J Immunol Methods. 1988 Jan 21;106(1):119–125. doi: 10.1016/0022-1759(88)90279-7. [DOI] [PubMed] [Google Scholar]
  13. Egan A. F., Chappel J. A., Burghaus P. A., Morris J. S., McBride J. S., Holder A. A., Kaslow D. C., Riley E. M. Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP1(19), the carboxy-terminal fragment of the major merozoite surface protein of Plasmodium falciparum. Infect Immun. 1995 Feb;63(2):456–466. doi: 10.1128/iai.63.2.456-466.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fraser T., Michon P., Barnwell J. W., Noe A. R., Al-Yaman F., Kaslow D. C., Adams J. H. Expression and serologic activity of a soluble recombinant Plasmodium vivax Duffy binding protein. Infect Immun. 1997 Jul;65(7):2772–2777. doi: 10.1128/iai.65.7.2772-2777.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibson H. L., Tucker J. E., Kaslow D. C., Krettli A. U., Collins W. E., Kiefer M. C., Bathurst I. C., Barr P. J. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol Biochem Parasitol. 1992 Feb;50(2):325–333. doi: 10.1016/0166-6851(92)90230-h. [DOI] [PubMed] [Google Scholar]
  16. Gilbert S. C., Plebanski M., Gupta S., Morris J., Cox M., Aidoo M., Kwiatkowski D., Greenwood B. M., Whittle H. C., Hill A. V. Association of malaria parasite population structure, HLA, and immunological antagonism. Science. 1998 Feb 20;279(5354):1173–1177. doi: 10.1126/science.279.5354.1173. [DOI] [PubMed] [Google Scholar]
  17. Good M. F., Kaslow D. C., Miller L. H. Pathways and strategies for developing a malaria blood-stage vaccine. Annu Rev Immunol. 1998;16:57–87. doi: 10.1146/annurev.immunol.16.1.57. [DOI] [PubMed] [Google Scholar]
  18. Hui G. S., Nikaido C., Hashiro C., Kaslow D. C., Collins W. E. Dominance of conserved B-cell epitopes of the Plasmodium falciparum merozoite surface protein, MSP1, in blood-stage infections of naive Aotus monkeys. Infect Immun. 1996 May;64(5):1502–1509. doi: 10.1128/iai.64.5.1502-1509.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaslow D. C., Hui G., Kumar S. Expression and antigenicity of Plasmodium falciparum major merozoite surface protein (MSP1(19)) variants secreted from Saccharomyces cerevisiae. Mol Biochem Parasitol. 1994 Feb;63(2):283–289. doi: 10.1016/0166-6851(94)90064-7. [DOI] [PubMed] [Google Scholar]
  20. Kirchgatter K., del Portillo H. A. Molecular analysis of Plasmodium vivax relapses using the MSP1 molecule as a genetic marker. J Infect Dis. 1998 Feb;177(2):511–515. doi: 10.1086/517389. [DOI] [PubMed] [Google Scholar]
  21. Koup R. A. Virus escape from CTL recognition. J Exp Med. 1994 Sep 1;180(3):779–782. doi: 10.1084/jem.180.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kumar S., Yadava A., Keister D. B., Tian J. H., Ohl M., Perdue-Greenfield K. A., Miller L. H., Kaslow D. C. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mol Med. 1995 Mar;1(3):325–332. [PMC free article] [PubMed] [Google Scholar]
  23. Ling I. T., Ogun S. A., Holder A. A. Immunization against malaria with a recombinant protein. Parasite Immunol. 1994 Feb;16(2):63–67. doi: 10.1111/j.1365-3024.1994.tb00324.x. [DOI] [PubMed] [Google Scholar]
  24. Ling I. T., Ogun S. A., Holder A. A. The combined epidermal growth factor-like modules of Plasmodium yoelii Merozoite Surface Protein-1 are required for a protective immune response to the parasite. Parasite Immunol. 1995 Aug;17(8):425–433. doi: 10.1111/j.1365-3024.1995.tb00910.x. [DOI] [PubMed] [Google Scholar]
  25. Longacre S., Mendis K. N., David P. H. Plasmodium vivax merozoite surface protein 1 C-terminal recombinant proteins in baculovirus. Mol Biochem Parasitol. 1994 Apr;64(2):191–205. doi: 10.1016/0166-6851(94)00002-6. [DOI] [PubMed] [Google Scholar]
  26. McBride J. S., Heidrich H. G. Fragments of the polymorphic Mr 185,000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol Biochem Parasitol. 1987 Feb;23(1):71–84. doi: 10.1016/0166-6851(87)90189-7. [DOI] [PubMed] [Google Scholar]
  27. Miller L. H., Roberts T., Shahabuddin M., McCutchan T. F. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol. 1993 May;59(1):1–14. doi: 10.1016/0166-6851(93)90002-f. [DOI] [PubMed] [Google Scholar]
  28. Mitchell D. A., Marshall T. K., Deschenes R. J. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast. 1993 Jul;9(7):715–722. doi: 10.1002/yea.320090705. [DOI] [PubMed] [Google Scholar]
  29. Pasay M. C., Cheng Q., Rzepczyk C., Saul A. Dimorphism of the C terminus of the Plasmodium vivax merozoite surface protein 1. Mol Biochem Parasitol. 1995 Mar;70(1-2):217–219. doi: 10.1016/0166-6851(95)00015-s. [DOI] [PubMed] [Google Scholar]
  30. Perera K. L., Handunnetti S. M., Holm I., Longacre S., Mendis K. Baculovirus merozoite surface protein 1 C-terminal recombinant antigens are highly protective in a natural primate model for human Plasmodium vivax malaria. Infect Immun. 1998 Apr;66(4):1500–1506. doi: 10.1128/iai.66.4.1500-1506.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pircher H., Moskophidis D., Rohrer U., Bürki K., Hengartner H., Zinkernagel R. M. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature. 1990 Aug 16;346(6285):629–633. doi: 10.1038/346629a0. [DOI] [PubMed] [Google Scholar]
  32. Pirson P. J., Perkins M. E. Characterization with monoclonal antibodies of a surface antigen of Plasmodium falciparum merozoites. J Immunol. 1985 Mar;134(3):1946–1951. [PubMed] [Google Scholar]
  33. Porto M., Ferreira M. U., Camargo L. M., Premawansa S., del Portillo H. A. Second form in a segment of the merozoite surface protein 1 gene of Plasmodium vivax among isolates from Rondônia (Brazil). Mol Biochem Parasitol. 1992 Aug;54(1):121–124. doi: 10.1016/0166-6851(92)90104-r. [DOI] [PubMed] [Google Scholar]
  34. Qari S. H., Shi Y. P., Goldman I. F., Nahlen B. L., Tibayrenc M., Lal A. A. Predicted and observed alleles of Plasmodium falciparum merozoite surface protein-1 (MSP-1), a potential malaria vaccine antigen. Mol Biochem Parasitol. 1998 May 1;92(2):241–252. doi: 10.1016/s0166-6851(98)00010-3. [DOI] [PubMed] [Google Scholar]
  35. Rénia L., Ling I. T., Marussig M., Miltgen F., Holder A. A., Mazier D. Immunization with a recombinant C-terminal fragment of Plasmodium yoelii merozoite surface protein 1 protects mice against homologous but not heterologous P. yoelii sporozoite challenge. Infect Immun. 1997 Nov;65(11):4419–4423. doi: 10.1128/iai.65.11.4419-4423.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shi Y. P., Sayed U., Qari S. H., Roberts J. M., Udhayakumar V., Oloo A. J., Hawley W. A., Kaslow D. C., Nahlen B. L., Lal A. A. Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1. Infect Immun. 1996 Jul;64(7):2716–2723. doi: 10.1128/iai.64.7.2716-2723.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Soares I. S., Levitus G., Souza J. M., Del Portillo H. A., Rodrigues M. M. Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria. Infect Immun. 1997 May;65(5):1606–1614. doi: 10.1128/iai.65.5.1606-1614.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Soares I. S., da Cunha M. G., Silva M. N., Souza J. M., Del Portillo H. A., Rodrigues M. M. Longevity of naturally acquired antibody responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1. Am J Trop Med Hyg. 1999 Mar;60(3):357–363. doi: 10.4269/ajtmh.1999.60.357. [DOI] [PubMed] [Google Scholar]
  39. Tian J. H., Kumar S., Kaslow D. C., Miller L. H. Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii. Infect Immun. 1997 Aug;65(8):3032–3036. doi: 10.1128/iai.65.8.3032-3036.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Udhayakumar V., Anyona D., Kariuki S., Shi Y. P., Bloland P. B., Branch O. H., Weiss W., Nahlen B. L., Kaslow D. C., Lal A. A. Identification of T and B cell epitopes recognized by humans in the C-terminal 42-kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)-1. J Immunol. 1995 Jun 1;154(11):6022–6030. [PubMed] [Google Scholar]
  41. Udhayakumar V., Ongecha J. M., Shi Y. P., Aidoo M., Orago A. S., Oloo A. J., Hawley W. A., Nahlen B. L., Hoffman S. L., Weiss W. R. Cytotoxic T cell reactivity and HLA-B35 binding of the variant Plasmodium falciparum circumsporozoite protein CD8+ CTL epitope in naturally exposed Kenyan adults. Eur J Immunol. 1997 Aug;27(8):1952–1957. doi: 10.1002/eji.1830270819. [DOI] [PubMed] [Google Scholar]
  42. Wilson C. F., Anand R., Clark J. T., McBride J. S. Topography of epitopes on a polymorphic schizont antigen of Plasmodium falciparum determined by the binding of monoclonal antibodies in a two-site radioimmunoassay. Parasite Immunol. 1987 Nov;9(6):737–746. doi: 10.1111/j.1365-3024.1987.tb00541.x. [DOI] [PubMed] [Google Scholar]
  43. Yang C., Collins W. E., Sullivan J. S., Kaslow D. C., Xiao L., Lal A. A. Partial protection against Plasmodium vivax blood-stage infection in Saimiri monkeys by immunization with a recombinant C-terminal fragment of merozoite surface protein 1 in block copolymer adjuvant. Infect Immun. 1999 Jan;67(1):342–349. doi: 10.1128/iai.67.1.342-349.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. de Campos-Lima P. O., Levitsky V., Brooks J., Lee S. P., Hu L. F., Rickinson A. B., Masucci M. G. T cell responses and virus evolution: loss of HLA A11-restricted CTL epitopes in Epstein-Barr virus isolates from highly A11-positive populations by selective mutation of anchor residues. J Exp Med. 1994 Apr 1;179(4):1297–1305. doi: 10.1084/jem.179.4.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. del Portillo H. A., Longacre S., Khouri E., David P. H. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4030–4034. doi: 10.1073/pnas.88.9.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES