Abstract
BACKGROUND: Nitric oxide (NO) has frequently been shown to display immunosuppressive activities. We describe here a molecular mechanism contributing to this effect. MATERIALS AND METHODS: Murine T cell lymphoma EL4-6.1 cells were activated with the physiological stimulus interleukin (IL)-1beta to express IL-2 mRNA in the presence or absence of subtoxic concentrations of the physiological spontaneous NO donor S-nitrosocysteine (SNOC). Subsequently, semiquantitative RT-PCR and gel shift assays with nuclear extracts were performed to analyze the effects of NO on IL-2 mRNA expression and on the activity of the dominant regulating transcription factors Sp1, EGR-1, and NFATc. RESULTS: NO inhibits IL-1beta-induced IL-2 mRNA expression in EL4-6.1 cells. The suppressive activity of NO was concentration dependent and found to be completely reversible. Importantly, NO at the concentrations used induced neither apoptosis nor necrosis. Dominant regulation of IL-2 gene expression is known to reside in the zinc finger transcription factors Sp1 or EGR-1 and in the non-zinc finger protein NFAT. NO abrogates the DNA binding activities of recombinant Sp1 and EGR-1. More importantly, gel shift assays also showed a lack of DNA binding of native Sp1 derived from NO-treated nuclear extracts and that from NO-treated viable lymphocytes. This effect is selective, as the DNA binding activity of recombinant NFATc was not affected by NO. CONCLUSION: Inactivation of zinc finger transcription factors by NO appears to be a molecular mechanism in the immunosuppressive activity of NO in mammals, thus contributing to NO-mediated inhibition of IL-2 gene expression after physiological stimuli. The exact understanding of the molecular mechanism leading to NO-mediated, fully reversible suppression of immune reactions may lead to use of this naturally occurring tool as an aid in inflammatory diseases.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammendola R., Mesuraca M., Russo T., Cimino F. The DNA-binding efficiency of Sp1 is affected by redox changes. Eur J Biochem. 1994 Oct 1;225(1):483–489. doi: 10.1111/j.1432-1033.1994.t01-1-00483.x. [DOI] [PubMed] [Google Scholar]
- Bauer H., Jung T., Tsikas D., Stichtenoth D. O., Frölich J. C., Neumann C. Nitric oxide inhibits the secretion of T-helper 1- and T-helper 2-associated cytokines in activated human T cells. Immunology. 1997 Feb;90(2):205–211. doi: 10.1046/j.1365-2567.1997.00161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berendji D., Kolb-Bachofen V., Meyer K. L., Grapenthin O., Weber H., Wahn V., Kröncke K. D. Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett. 1997 Mar 17;405(1):37–41. doi: 10.1016/s0014-5793(97)00150-6. [DOI] [PubMed] [Google Scholar]
- Bogdan C. The multiplex function of nitric oxide in (auto)immunity. J Exp Med. 1998 May 4;187(9):1361–1365. doi: 10.1084/jem.187.9.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang R. H., Feng M. H., Liu W. H., Lai M. Z. Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology. 1997 Mar;90(3):364–369. doi: 10.1111/j.1365-2567.1997.00364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L., Glover J. N., Hogan P. G., Rao A., Harrison S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature. 1998 Mar 5;392(6671):42–48. doi: 10.1038/32100. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Decker E. L., Skerka C., Zipfel P. F. The early growth response protein (EGR-1) regulates interleukin-2 transcription by synergistic interaction with the nuclear factor of activated T cells. J Biol Chem. 1998 Oct 9;273(41):26923–26930. doi: 10.1074/jbc.273.41.26923. [DOI] [PubMed] [Google Scholar]
- Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
- Hoffman R. A., Langrehr J. M., Billiar T. R., Curran R. D., Simmons R. L. Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine. J Immunol. 1990 Oct 1;145(7):2220–2226. [PubMed] [Google Scholar]
- Kadonaga J. T., Carner K. R., Masiarz F. R., Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. doi: 10.1016/0092-8674(87)90594-0. [DOI] [PubMed] [Google Scholar]
- Kashima N., Nishi-Takaoka C., Fujita T., Taki S., Yamada G., Hamuro J., Taniguchi T. Unique structure of murine interleukin-2 as deduced from cloned cDNAs. 1985 Jan 31-Feb 6Nature. 313(6001):402–404. doi: 10.1038/313402a0. [DOI] [PubMed] [Google Scholar]
- Klug A., Schwabe J. W. Protein motifs 5. Zinc fingers. FASEB J. 1995 May;9(8):597–604. [PubMed] [Google Scholar]
- Knoepfel L., Steinkühler C., Carrì M. T., Rotilio G. Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1. Biochem Biophys Res Commun. 1994 Jun 15;201(2):871–877. doi: 10.1006/bbrc.1994.1782. [DOI] [PubMed] [Google Scholar]
- Kolb H., Kolb-Bachofen V. Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today. 1998 Dec;19(12):556–561. doi: 10.1016/s0167-5699(98)01366-8. [DOI] [PubMed] [Google Scholar]
- Kolb H., Kolb-Bachofen V. Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today. 1992 May;13(5):157–160. doi: 10.1016/0167-5699(92)90118-Q. [DOI] [PubMed] [Google Scholar]
- Kröncke K. D., Fehsel K., Kolb-Bachofen V. Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol Chem Hoppe Seyler. 1995 Jun;376(6):327–343. doi: 10.1515/bchm3.1995.376.6.327. [DOI] [PubMed] [Google Scholar]
- Kröncke K. D., Fehsel K., Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol. 1998 Aug;113(2):147–156. doi: 10.1046/j.1365-2249.1998.00648.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kröncke K. D., Fehsel K., Schmidt T., Zenke F. T., Dasting I., Wesener J. R., Bettermann H., Breunig K. D., Kolb-Bachofen V. Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun. 1994 Apr 29;200(2):1105–1110. doi: 10.1006/bbrc.1994.1564. [DOI] [PubMed] [Google Scholar]
- Kröncke K. D., Kolb-Bachofen V. Detection of nitric oxide interaction with zinc finger proteins. Methods Enzymol. 1996;269:279–284. doi: 10.1016/s0076-6879(96)69028-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lowenthal J. W., Cerottini J. C., MacDonald H. R. Interleukin 1-dependent induction of both interleukin 2 secretion and interleukin 2 receptor expression by thymoma cells. J Immunol. 1986 Aug 15;137(4):1226–1231. [PubMed] [Google Scholar]
- Marcinkiewicz J., Grabowska A., Chain B. M. Is there a role for nitric oxide in regulation of T cell secretion of IL-2? J Immunol. 1996 Jun 15;156(12):4617–4621. [PubMed] [Google Scholar]
- Matthews J. R., Botting C. H., Panico M., Morris H. R., Hay R. T. Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. 1996 Jun 15;24(12):2236–2242. doi: 10.1093/nar/24.12.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills C. D. Molecular basis of "suppressor" macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J Immunol. 1991 Apr 15;146(8):2719–2723. [PubMed] [Google Scholar]
- Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
- Peng H. B., Libby P., Liao J. K. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem. 1995 Jun 9;270(23):14214–14219. doi: 10.1074/jbc.270.23.14214. [DOI] [PubMed] [Google Scholar]
- Serfling E., Avots A., Neumann M. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochim Biophys Acta. 1995 Sep 19;1263(3):181–200. doi: 10.1016/0167-4781(95)00112-t. [DOI] [PubMed] [Google Scholar]
- Skerka C., Decker E. L., Zipfel P. F. A regulatory element in the human interleukin 2 gene promoter is a binding site for the zinc finger proteins Sp1 and EGR-1. J Biol Chem. 1995 Sep 22;270(38):22500–22506. doi: 10.1074/jbc.270.38.22500. [DOI] [PubMed] [Google Scholar]
- Sternberg J., McGuigan F. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection. Eur J Immunol. 1992 Oct;22(10):2741–2744. doi: 10.1002/eji.1830221041. [DOI] [PubMed] [Google Scholar]
- Tabuchi A., Sano K., Oh E., Tsuchiya T., Tsuda M. Modulation of AP-1 activity by nitric oxide (NO) in vitro: NO-mediated modulation of AP-1. FEBS Lett. 1994 Aug 29;351(1):123–127. doi: 10.1016/0014-5793(94)00839-6. [DOI] [PubMed] [Google Scholar]
- Taylor-Robinson A. W. Inhibition of IL-2 production by nitric oxide: a novel self-regulatory mechanism for Th1 cell proliferation. Immunol Cell Biol. 1997 Apr;75(2):167–175. doi: 10.1038/icb.1997.23. [DOI] [PubMed] [Google Scholar]
- Wink D. A., Mitchell J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998 Sep;25(4-5):434–456. doi: 10.1016/s0891-5849(98)00092-6. [DOI] [PubMed] [Google Scholar]
- al-Ramadi B. K., Meissler J. J., Jr, Huang D., Eisenstein T. K. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur J Immunol. 1992 Sep;22(9):2249–2254. doi: 10.1002/eji.1830220911. [DOI] [PubMed] [Google Scholar]
- van der Veen R. C., Dietlin T. A., Pen L., Gray J. D. Nitric oxide inhibits the proliferation of T-helper 1 and 2 lymphocytes without reduction in cytokine secretion. Cell Immunol. 1999 May 1;193(2):194–201. doi: 10.1006/cimm.1999.1471. [DOI] [PubMed] [Google Scholar]






