Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1960 Dec;46(12):1626–1645. doi: 10.1073/pnas.46.12.1626

REGULATION BY COLIPHAGE LAMBDA OF THE EXPRESSION OF THE CAPACITY TO SYNTHESIZE A SEQUENCE OF HOST ENZYMES*

Michael B Yarmolinsky 1, Herbert Wiesmeyer 1,
PMCID: PMC223095  PMID: 16590796

Full text

PDF
1626

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARBER W., KELLENBERGER G. Study of the properties of seven defective-lysogenic strains derived from Escherichia coli K12 (lambda). Virology. 1958 Jun;5(3):458–475. doi: 10.1016/0042-6822(58)90039-4. [DOI] [PubMed] [Google Scholar]
  2. ARBER W., KELLENBERGER G., WEIGLE J. La défectuosité du phage lambda transducteur. Schweiz Z Pathol Bakteriol. 1957;20(5):659–665. [PubMed] [Google Scholar]
  3. Appleyard R K. Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia Coli K12. Genetics. 1954 Jul;39(4):440–452. doi: 10.1093/genetics/39.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BUTTIN G., JACOB F., MONOD J. [Constituent synthesis of galactokinase following the development of lambda bacteriophages in Escherichia coli K 12]. C R Hebd Seances Acad Sci. 1960 Mar 28;250:2471–2473. [PubMed] [Google Scholar]
  5. CAMPBELL A. Transduction and segregation in Escherichia coli K12. Virology. 1957 Oct;4(2):366–384. doi: 10.1016/0042-6822(57)90070-3. [DOI] [PubMed] [Google Scholar]
  6. Campbell A, Balbinder E. Transduction of the Galactose Region of Escherichia Coli K12 by the Phages lambda and lambda-434 Hybrid. Genetics. 1959 May;44(3):309–319. doi: 10.1093/genetics/44.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HORECKER B. L., SMYRNIOTIS P. Z. Phosphogluconic acid dehydrogenase from yeast. J Biol Chem. 1951 Nov;193(1):371–381. [PubMed] [Google Scholar]
  9. JACOB F., CAMPBELL A. Sur le système de répression assurant l'immunité chez les bactéries lysogenes. C R Hebd Seances Acad Sci. 1959 Jun 1;248(22):3219–3221. [PubMed] [Google Scholar]
  10. JACOB F., FUERST R., WOLLMAN E. L. Recherches sur les bactéries lysogènes défectives. II. Les types physiologiques liés aux mutations du prophage. Ann Inst Pasteur (Paris) 1957 Dec;93(6):724–753. [PubMed] [Google Scholar]
  11. JACOB F., PERRIN D., SANCHEZ C., MONOD J. [Operon: a group of genes with the expression coordinated by an operator]. C R Hebd Seances Acad Sci. 1960 Feb 29;250:1727–1729. [PubMed] [Google Scholar]
  12. JACOB F., WOLLMAN E. L. Sur les processus de conjugaison et de recombinaison chez Escherichia coli. I. L'induction par conjugaison ou induction zygotique. Ann Inst Pasteur (Paris) 1956 Oct;91(4):486–510. [PubMed] [Google Scholar]
  13. JACOB F., WOLLMAN E. L. Sur les processus de conjugaison et de recombinaison génétique chez Escherichia coli. IV. Prophages inductibles et mesure des segments génétiques transferés au cours de la conjugaison. Ann Inst Pasteur (Paris) 1958 Nov;95(5):497–519. [PubMed] [Google Scholar]
  14. KAISER A. D. A genetic study of the temperate coliphage. Virology. 1955 Nov;1(4):424–443. doi: 10.1016/0042-6822(55)90036-2. [DOI] [PubMed] [Google Scholar]
  15. KAISER A. D., JACOB F. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology. 1957 Dec;4(3):509–521. doi: 10.1016/0042-6822(57)90083-1. [DOI] [PubMed] [Google Scholar]
  16. KAISER A. D. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. doi: 10.1016/0042-6822(57)90022-3. [DOI] [PubMed] [Google Scholar]
  17. KALCKAR H. M., BRAGANCA B., MUNCH-PETERSEN H. M. Uridyl transferases and the formation of uridine diphosphogalactose. Nature. 1953 Dec 5;172(4388):1038–1038. [PubMed] [Google Scholar]
  18. KURAHASHI K. Enzyme formation in galactose-negative mutants of Escherichia coli. Science. 1957 Jan 18;125(3238):114–116. doi: 10.1126/science.125.3238.114. [DOI] [PubMed] [Google Scholar]
  19. KURAHASHI K., SUGIMURA A. Purification and properties of galactose 1-phosphate uridyl transferase from Escherichia coli. J Biol Chem. 1960 Apr;235:940–946. [PubMed] [Google Scholar]
  20. Kalckar H. M., Kurahashi K., Jordan E. HEREDITARY DEFECTS IN GALACTOSE METABOLISM IN ESCHERICHIA COLI MUTANTS, I. DETERMINATION OF ENZYME ACTIVITIES. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1776–1786. doi: 10.1073/pnas.45.12.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LEDERBERG J. The beta-d-galactosidase of Escherichia coli, strain K-12. J Bacteriol. 1950 Oct;60(4):381–392. doi: 10.1128/jb.60.4.381-392.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LWOFF A. Lysogeny. Bacteriol Rev. 1953 Dec;17(4):269–337. doi: 10.1128/br.17.4.269-337.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LWOFF A., SIMINOVITCH L., KJELDGAARD N. Induction de la production de bacteriophages chez une bactérie lysogène. Ann Inst Pasteur (Paris) 1950 Dec;79(6):815–859. [PubMed] [Google Scholar]
  24. Lederberg E M, Lederberg J. Genetic Studies of Lysogenicity in Escherichia Coli. Genetics. 1953 Jan;38(1):51–64. doi: 10.1093/genetics/38.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lederberg J. Detection of Fermentative Variants with Tetrazolium. J Bacteriol. 1948 Nov;56(5):695–695. doi: 10.1128/jb.56.5.695-695.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MAXWELL E. S. The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J Biol Chem. 1957 Nov;229(1):139–151. [PubMed] [Google Scholar]
  27. Morse M L, Lederberg E M, Lederberg J. Transduction in Escherichia Coli K-12. Genetics. 1956 Jan;41(1):142–156. doi: 10.1093/genetics/41.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PUCK T. T., LEE H. H. Mechanism of cell wall penetration by viruses. I. An increase in host cell permeability induced by bacteriophage infection. J Exp Med. 1954 May 1;99(5):481–494. doi: 10.1084/jem.99.5.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SECHAUD J., KELLENBERGER E. Lyse précoce, provoquée par le chloroforme, chez les bactéries infectées par du bactériophage. Ann Inst Pasteur (Paris) 1956 Jan;90(1):102–106. [PubMed] [Google Scholar]
  30. Vogel H. J. REPRESSED AND INDUCED ENZYME FORMATION: A UNIFIED HYPOTHESIS. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):491–496. doi: 10.1073/pnas.43.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WEIGLE J. Transduction by coliphage of the galactose marker. Virology. 1957 Aug;4(1):14–25. doi: 10.1016/0042-6822(57)90040-5. [DOI] [PubMed] [Google Scholar]
  32. WOLLMAN E. L. Sur le determinisme génetique de la lysogénie. Ann Inst Pasteur (Paris) 1953 Jan;84(1):281–293. [PubMed] [Google Scholar]
  33. ZINDER N. D. Lysogenization and superinfection immunity in Salmonella. Virology. 1958 Apr;5(2):291–326. doi: 10.1016/0042-6822(58)90025-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES