Abstract
The high reactivity of the serine residue at the active site of serine proteases is often attributed to the formation of a hydrogen bond between this serine and a histidine residue. In the case of the serine protease subtilisin, the catalytic serine residue can be specifically replaced by a cysteine residue and this modified enzyme is called thiol-subtilisin. By studying the D2O effect on acyl-enzyme formation with subtilisin and thiol-subtilisin, we present evidence that thiol-subtilisin but not subtilisin may contain a hydrogen bond. Based on the comparison of the catalytic activities of subtilisin and thiol-subtilisin, a rigid active site model for the serine proteases is proposed in which the histidine residue operates in a fixed steric position both as a general base and as a general acid, and this, rather than the formation of a hydrogen bond, accounts for the high nucleophilicity of the serine residue.
Full text
PDF![1335](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/b56f8cca924f/pnas00114-0187.png)
![1336](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/694d5e5a91ec/pnas00114-0188.png)
![1337](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/e22ea22ab322/pnas00114-0189.png)
![1338](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/fb8c83d5fdbf/pnas00114-0190.png)
![1339](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/fa5a952e26a8/pnas00114-0191.png)
![1340](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/55d51ed9f7bd/pnas00114-0192.png)
![1341](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/1f28b9e305ab/pnas00114-0193.png)
![1342](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b2/223289/022e5bff2662/pnas00114-0194.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENDER M. L., KEZDY J. MECHANISM OF ACTION OF PROTEOLYTIC ENZYMES. Annu Rev Biochem. 1965;34:49–76. doi: 10.1146/annurev.bi.34.070165.000405. [DOI] [PubMed] [Google Scholar]
- Blow D. M., Birktoft J. J., Hartley B. S. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature. 1969 Jan 25;221(5178):337–340. doi: 10.1038/221337a0. [DOI] [PubMed] [Google Scholar]
- Charney E., Bernhard S. A. Optical properties and the chemical nature of acyl-chymotrypsin linkages. J Am Chem Soc. 1967 May 24;89(11):2726–2733. doi: 10.1021/ja00987a040. [DOI] [PubMed] [Google Scholar]
- Inagami T., York S. S., Patchornik A. An electrophilic mechanism in the chymotrypsin-catalyzed hydrolysis of anilide substrates. J Am Chem Soc. 1965 Jan 5;87(1):126–127. doi: 10.1021/ja01079a027. [DOI] [PubMed] [Google Scholar]
- Neet K. E., Koshland D. E., Jr The conversion of serine at the active site of subtilisin to cysteine: a "chemical mutation". Proc Natl Acad Sci U S A. 1966 Nov;56(5):1606–1611. doi: 10.1073/pnas.56.5.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neet K. E., Nanci A., Koshland D. E., Jr Properties of thiol-subtilisin. The consequences of converting the active serine residue to cysteine in a serine protease. J Biol Chem. 1968 Dec 25;243(24):6392–6401. [PubMed] [Google Scholar]
- Parker L., Wang J. H. On the mechanism of action at the acylation step of the alpha-chymotrypsin-catalyzed hydrolysis of anilides. J Biol Chem. 1968 Jul 10;243(13):3729–3734. [PubMed] [Google Scholar]
- Polgar L., Bender M. L. Chromatography and activity of thiol-subtilisin. Biochemistry. 1969 Jan;8(1):136–141. doi: 10.1021/bi00829a019. [DOI] [PubMed] [Google Scholar]
- Polgar L., Bender M. L. The reactivity of thiol-subtilisin, an enzyme containing a synthetic functional group. Biochemistry. 1967 Feb;6(2):610–620. doi: 10.1021/bi00854a032. [DOI] [PubMed] [Google Scholar]
- Sigler P. B., Blow D. M., Matthews B. W., Henderson R. Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J Mol Biol. 1968 Jul 14;35(1):143–164. doi: 10.1016/s0022-2836(68)80043-9. [DOI] [PubMed] [Google Scholar]
- Wang J. H. Facilitated proton transfer in enzyme catalysis. It may have a crucial role in determining the efficiency and specificity of enzymes. Science. 1968 Jul 26;161(3839):328–334. doi: 10.1126/science.161.3839.328. [DOI] [PubMed] [Google Scholar]
- Wright C. S., Alden R. A., Kraut J. Structure of subtilisin BPN' at 2.5 angström resolution. Nature. 1969 Jan 18;221(5177):235–242. doi: 10.1038/221235a0. [DOI] [PubMed] [Google Scholar]