Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Nov;64(3):905–912. doi: 10.1073/pnas.64.3.905

ANALYSIS OF THE CHLORAMPHENICOL-SENSITIVE AND CHLORAMPHENICOL-RESISTANT STEPS IN THE INITIATION OF DNA SYNTHESIS IN E. coli B/r

C B Ward 1, D A Glaser 1
PMCID: PMC223320  PMID: 4905992

Abstract

Two processes that are required for the initiation of a new round of bacterial DNA synthesis and which are blocked by low and high concentrations of chloramphenicol, respectively, have been examined in order to determine the cell age at which each of these processes occurs as a function of growth rate. The timing of these steps in the life cycle was determined by observing changes in the variation with cell age of the rate of DNA synthesis during growth in medium containing chloramphenicol of the desired concentration. For cell-doubling times ranging from 27 to 49 minutes, it was found that the step which is resistant to low concentrations of chloramphenicol occurs at the cell age at which a new round of DNA synthesis is initiated. The chloramphenicol-sensitive step was found to occur about 21 minutes before the start of rounds, independent of growth rate for doubling times between 27 and 49 minutes. For doubling of times 41 minutes or less, the chloramphenicol-sensitive processes occurred within five minutes after cell division.

Full text

PDF
905

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONHOEFFER F., GIERER A. ON THE GROWTH MECHANISM OF THE BACTERIAL CHROMOSOME. J Mol Biol. 1963 Nov;7:534–540. doi: 10.1016/s0022-2836(63)80100-x. [DOI] [PubMed] [Google Scholar]
  2. CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
  3. HELMSTETTER C. E., CUMMINGS D. J. BACTERIAL SYNCHRONIZATION BY SELECTION OF CELLS AT DIVISION. Proc Natl Acad Sci U S A. 1963 Oct;50:767–774. doi: 10.1073/pnas.50.4.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Helmstetter C. E. DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):507–518. doi: 10.1016/0022-2836(68)90424-5. [DOI] [PubMed] [Google Scholar]
  5. Helmstetter C., Cooper S., Pierucci O., Revelas E. On the bacterial life sequence. Cold Spring Harb Symp Quant Biol. 1968;33:809–822. doi: 10.1101/sqb.1968.033.01.093. [DOI] [PubMed] [Google Scholar]
  6. Lark K. G., Renger H. Initiation of DNA replication in Escherichia coli 15T-: chronological dissection of three physiological processes required for initiation. J Mol Biol. 1969 Jun 14;42(2):221–235. doi: 10.1016/0022-2836(69)90039-4. [DOI] [PubMed] [Google Scholar]
  7. Meselson M., Stahl F. W. THE REPLICATION OF DNA IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. OISHI M., YOSHIKAWA H., SUEOKA N. SYNCHRONOUS AND DICHOTOMOUS REPLICATIONS OF THE BACILLUS SUBTILIS CHROMOSOME DURING SPORE GERMINATION. Nature. 1964 Dec 12;204:1069–1073. doi: 10.1038/2041069a0. [DOI] [PubMed] [Google Scholar]
  9. Ward C. B., Glaser D. A. Origin and direction of DNA synthesis in E. coli B-r. Proc Natl Acad Sci U S A. 1969 Mar;62(3):881–886. doi: 10.1073/pnas.62.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES