Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Nov;64(3):1057–1064. doi: 10.1073/pnas.64.3.1057

CONTROL OF FATTY ACID COMPOSITION IN PHOSPHOLIPIDS OF Escherichia coli: RESPONSE TO FATTY ACID SUPPLEMENTS IN A FATTY ACID AUXOTROPH*

Mojtaba Esfahani 1, Eugene M Barnes Jr 1, Salih J Wakil 1
PMCID: PMC223343  PMID: 4905989

Abstract

The effect of exogenous unsaturated fatty acids on the fatty acid composition of phospholipids of a mutant of E. coli has been examined. These exogenous acids serve as growth factors for an auxotroph requiring unsaturated fatty acids. When each member of a structurally homologous series of cis-unsaturated fatty acids serves as a growth factor, the percentage of unsaturated fatty acid present in phospholipids increases with increasing chain length or decreasing number of double bonds in the apolar chain of the supplement. At 37°, trans-octadecenoic acids support growth and are incorporated into phospholipids at levels higher than the corresponding cis-acids. However, a temperature shift to 27° with trans-acids results in loss of viability and lysis. Utilization of cis-acids as supplements at decreasing temperatures between 42° and 27° results in increasing amounts of unsaturated fatty acids in phospholipids with decreasing temperature. These observations suggest the operation of a regulatory mechanism which controls the composition of saturated versus unsaturated acids in order to maintain the physical properties of phospholipids within narrow limits.

Full text

PDF
1057

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chapman D., Kamat V. B., de Gier J., Penkett S. A. Nuclear magnetic resonance studies of erythrocyte membranes. J Mol Biol. 1968 Jan 14;31(1):101–114. doi: 10.1016/0022-2836(68)90058-2. [DOI] [PubMed] [Google Scholar]
  3. Chapman D., Owens N. F., Walker D. A. Physical studies of phospholipids. II. Monolayer studies of some synthetic 2,3-diacyl-DL-phosphatidylethanolamines and phosphatidylcholines containing trans double bonds. Biochim Biophys Acta. 1966 May 12;120(1):148–155. doi: 10.1016/0926-6585(66)90286-x. [DOI] [PubMed] [Google Scholar]
  4. Dempsey W. B., Pachler P. F. Isolation and characterization of pyridoxine auxotrophs of Escherichia coli. J Bacteriol. 1966 Feb;91(2):642–645. doi: 10.1128/jb.91.2.642-645.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  6. Henning U., Dennert G., Rehn K., Deppe G. Effects of oleate starvation in a fatty acid auxotroph of Escherichia coli K-12. J Bacteriol. 1969 May;98(2):784–796. doi: 10.1128/jb.98.2.784-796.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kohiyama M., Cousin D., Ryter A., Jacob F. Mutants thermosensibles d'Escherichia coli K 12. I. Isolement et caractérisation rapide. Ann Inst Pasteur (Paris) 1966 Apr;110(4):465–486. [PubMed] [Google Scholar]
  8. MEYER F., BLOCH K. METABOLISM OF STEAROLIC ACID IN YEAST. J Biol Chem. 1963 Aug;238:2654–2659. [PubMed] [Google Scholar]
  9. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NORRIS A. T., MATSUMURA S., BLOCH K. FATTY ACID SYNTHETASE AND BETA-HYDROXYDECANOYL COENZYME A DEHYDRASE FROM ESCHERICHIA COLI. J Biol Chem. 1964 Nov;239:3653–3662. [PubMed] [Google Scholar]
  11. Silbert D. F., Ruch F., Vagelos P. R. Fatty acid replacements in a fatty acid auxotroph of Escherichia coli. J Bacteriol. 1968 May;95(5):1658–1665. doi: 10.1128/jb.95.5.1658-1665.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Silbert D. F., Vagelos P. R. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1579–1586. doi: 10.1073/pnas.58.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steim J. M., Tourtellotte M. E., Reinert J. C., McElhaney R. N., Rader R. L. Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc Natl Acad Sci U S A. 1969 May;63(1):104–109. doi: 10.1073/pnas.63.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. van DEENEN L., HOUTSMULLERUM, de HASS G., MULDER E. Monomolecular layers of synthetic phosphatides. J Pharm Pharmacol. 1962 Jul;14:429–444. doi: 10.1111/j.2042-7158.1962.tb11121.x. [DOI] [PubMed] [Google Scholar]
  15. van Deenen L. L. Some structural and dynamic aspects of lipids in biological membranes. Ann N Y Acad Sci. 1966 Jul 14;137(2):717–730. doi: 10.1111/j.1749-6632.1966.tb50193.x. [DOI] [PubMed] [Google Scholar]
  16. van Golde L. M., van Deenen L. L. The effect of dietary fat on the molecular species of lecithin from rat liver. Biochim Biophys Acta. 1966 Dec 7;125(3):496–509. doi: 10.1016/0005-2760(66)90038-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES