Skip to main content
Proceedings of the AMIA Annual Fall Symposium logoLink to Proceedings of the AMIA Annual Fall Symposium
. 1997:595–599.

Towards a comprehensive medical language processing system: methods and issues.

C Friedman 1
PMCID: PMC2233560  PMID: 9357695

Abstract

Natural language processing (NLP) systems can help solve the data entry problem by providing coded data from textual reports for clinical applications. A number of NLP systems have shown promise, but have not yet achieved wide-spread use for practical applications. In order to achieve such use, a system must have broad coverage of the clinical domain and not be restricted to limited applications. In addition, an NLP system must perform satisfactorily for real-world applications. This paper describes methods and issues associated with an ongoing extension of MedLEE, an operational NLP system, from a limited domain to a domain that encompasses comprehensive clinical information.

Full text

PDF
595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baud R. H., Rassinoux A. M., Wagner J. C., Lovis C., Juge C., Alpay L. L., Michel P. A., Degoulet P., Scherrer J. R. Representing clinical narratives using conceptual graphs. Methods Inf Med. 1995 Mar;34(1-2):176–186. [PubMed] [Google Scholar]
  2. Friedman C., Alderson P. O., Austin J. H., Cimino J. J., Johnson S. B. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc. 1994 Mar-Apr;1(2):161–174. doi: 10.1136/jamia.1994.95236146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Friedman C., Cimino J. J., Johnson S. B. A schema for representing medical language applied to clinical radiology. J Am Med Inform Assoc. 1994 May-Jun;1(3):233–248. doi: 10.1136/jamia.1994.95236155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gundersen M. L., Haug P. J., Pryor T. A., van Bree R., Koehler S., Bauer K., Clemons B. Development and evaluation of a computerized admission diagnoses encoding system. Comput Biomed Res. 1996 Oct;29(5):351–372. doi: 10.1006/cbmr.1996.0026. [DOI] [PubMed] [Google Scholar]
  5. Haug P. J., Ranum D. L., Frederick P. R. Computerized extraction of coded findings from free-text radiologic reports. Work in progress. Radiology. 1990 Feb;174(2):543–548. doi: 10.1148/radiology.174.2.2404321. [DOI] [PubMed] [Google Scholar]
  6. Hripcsak G., Friedman C., Alderson P. O., DuMouchel W., Johnson S. B., Clayton P. D. Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med. 1995 May 1;122(9):681–688. doi: 10.7326/0003-4819-122-9-199505010-00007. [DOI] [PubMed] [Google Scholar]
  7. Jain N. L., Knirsch C. A., Friedman C., Hripcsak G. Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. Proc AMIA Annu Fall Symp. 1996:542–546. [PMC free article] [PubMed] [Google Scholar]
  8. Rassinoux A. M., Wagner J. C., Lovis C., Baud R. H., Rector A., Scherrer J. R. Analysis of medical texts based on a sound medical model. Proc Annu Symp Comput Appl Med Care. 1995:27–31. [PMC free article] [PubMed] [Google Scholar]
  9. Sager N., Lyman M., Nhàn N. T., Tick L. J. Medical language processing: applications to patient data representation and automatic encoding. Methods Inf Med. 1995 Mar;34(1-2):140–146. [PubMed] [Google Scholar]
  10. Spyns P. Natural language processing in medicine: an overview. Methods Inf Med. 1996 Dec;35(4-5):285–301. [PubMed] [Google Scholar]
  11. Zweigenbaum P. MENELAS: an access system for medical records using natural language. Comput Methods Programs Biomed. 1994 Oct;45(1-2):117–120. doi: 10.1016/0169-2607(94)90029-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the AMIA Annual Fall Symposium are provided here courtesy of American Medical Informatics Association

RESOURCES