Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Oct;64(2):504–511. doi: 10.1073/pnas.64.2.504

CROSS-BRIDGE PROPERTIES DERIVED FROM MUSCLE ISOTONIC VELOCITY TRANSIENTS

R J Podolsky 1, A C Nolan 1, S A Zaveler 1
PMCID: PMC223373  PMID: 5261029

Abstract

The rate constants for the turnover of cross-bridges during frog muscle contraction were determined from an analysis of the motion that follows step decreases in load. For a given projection from the myosin filament, there appears to be a range of about 100 Å along the length of the filament over which the projection can attach to the actin filament and form a cross-bridge. The site of attachment is then displaced by a distance of this same order before the link is broken. The values of the rate constants also imply that a cross-bridge is formed each time an actin site comes within range of a myosin projection, so that the turnover of cross-bridges for a given contraction distance is independent of the speed of the motion.

Full text

PDF
504

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gordon A. M., Huxley A. F., Julian F. J. Tension development in highly stretched vertebrate muscle fibres. J Physiol. 1966 May;184(1):143–169. doi: 10.1113/jphysiol.1966.sp007908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HILL A. V. THE EFFECT OF LOAD ON THE HEAT OF SHORTENING OF MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:297–318. doi: 10.1098/rspb.1964.0004. [DOI] [PubMed] [Google Scholar]
  3. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  4. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  5. JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. PODOLSKY R. J. Kinetics of muscular contraction: the approach to the steady state. Nature. 1960 Nov 19;188:666–668. doi: 10.1038/188666a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES