Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Oct;64(2):677–682. doi: 10.1073/pnas.64.2.677

DAILY RHYTHMS IN HEPATIC POLYSOME PROFILES AND TYROSINE TRANSAMINASE ACTIVITY: ROLE OF DIETARY PROTEIN

Bette Fishman 1, Richard J Wurtman 1, Hamish N Munro 1
PMCID: PMC223397  PMID: 4391022

Abstract

Hepatic polysome profiles vary in untreated rats as a function of time of day. The ratio of polysomes to total ribosomes increases from 50 to 73 per cent in darkness. There is also a daily rhythm in tyrosine transaminase activity which resembles but does not coincide with the polysome rhythm. Both rhythms are dependent on the cyclic ingestion of dietary protein, and disappear in rats given a protein-free diet.

Full text

PDF
677

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baliga B. S., Pronczuk A. W., Munro H. N. Regulation of polysome aggregation in a cell-free system through amino acid supply. J Mol Biol. 1968 Jul 14;34(2):199–218. doi: 10.1016/0022-2836(68)90247-7. [DOI] [PubMed] [Google Scholar]
  2. Drysdale J. W., Munro H. N. Polysome profiles obtained from mammalian tissues by an improved procedure. Biochim Biophys Acta. 1967 May 30;138(3):616–618. doi: 10.1016/0005-2787(67)90562-x. [DOI] [PubMed] [Google Scholar]
  3. Fleck A., Shepherd J., Munro H. N. Protein synthesis in rat liver: influence of amino acids in diet on microsomes and polysomes. Science. 1965 Oct 29;150(3696):628–629. doi: 10.1126/science.150.3696.628. [DOI] [PubMed] [Google Scholar]
  4. Munro H. N. Role of amino acid supply in regulating ribosome function. Fed Proc. 1968 Sep-Oct;27(5):1231–1237. [PubMed] [Google Scholar]
  5. Pronczul A. W., Baliga B. S., Triant J. W., Munro H. N. Comparaison of the effect of amino acid supply on hepatic polysome profiles in vivo and in vitro. Biochim Biophys Acta. 1968 Mar 18;157(1):204–206. doi: 10.1016/0005-2787(68)90281-5. [DOI] [PubMed] [Google Scholar]
  6. WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]
  7. Wunner W. H., Bell J., Munro H. N. The effect of feeding with a tryptophan-free amino acid mixture on rat-liver polysomes and ribosomal ribonucleic acid. Biochem J. 1966 Nov;101(2):417–428. doi: 10.1042/bj1010417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wurtman R. J., Axelrod J. Daily rhythmic changes in tyrosine transaminase activity of the rat liver. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1594–1598. doi: 10.1073/pnas.57.6.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wurtman R. J., Shoemaker W. J., Larin F. Mechanism of the daily rhythm in hepatic tyrosine transaminase activity: role of dietary tryptophan. Proc Natl Acad Sci U S A. 1968 Mar;59(3):800–807. doi: 10.1073/pnas.59.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zigmond M. J., Shoemaker W. J., Larin F., Wurtman R. J. Hepatic tyrosine transaminase rhythm: interaction of environmental lighting, food consumption and dietary protein content. J Nutr. 1969 May;98(1):71–75. doi: 10.1093/jn/98.1.71. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES