Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Aug;63(4):1164–1168. doi: 10.1073/pnas.63.4.1164

DNA OF BACTERIOPHAGE PM2: A CLOSED CIRCULAR DOUBLE-STRANDED MOLECULE

Romilio T Espejo 1, Eliana S Canelo 1, Robert L Sinsheimer 1
PMCID: PMC223444  PMID: 5260915

Abstract

The DNA molecules isolated from mature bacteriophage PM2 are closed double-stranded rings of a molecular weight of six million. Direct evidence for the circularity and supercoiling of PM2 DNA was obtained by electron microscopy. Other properties, such as sedimentation behavior at neutral and alkaline pH, unusually high buoyant density in alkaline CsCl, and stability upon heating, are consistent with this structure. Only the four common nucleotides are found after hydrolysis and chromatographic analysis of PM2 DNA.

Full text

PDF
1164

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer W., Vinograd J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol. 1968 Apr 14;33(1):141–171. doi: 10.1016/0022-2836(68)90286-6. [DOI] [PubMed] [Google Scholar]
  2. Bruner R., Vinograd J. The evaluation of standard sedimentation coefficients of sodium RNA and sodium DNA from sedimentation velocity data in concentrated NaCl and CsCl solutions. Biochim Biophys Acta. 1965 Sep 6;108(1):18–29. doi: 10.1016/0005-2787(65)90104-8. [DOI] [PubMed] [Google Scholar]
  3. Burton A., Sinsheimer R. L. The process of infection with bacteriophage phi-X174 VII. Ultracentrifugal analysis of the replicative form. J Mol Biol. 1965 Dec;14(2):327–347. doi: 10.1016/s0022-2836(65)80185-1. [DOI] [PubMed] [Google Scholar]
  4. Crawford L. V. A study of human papilloma virus DNA. J Mol Biol. 1965 Sep;13(2):362–372. doi: 10.1016/s0022-2836(65)80103-6. [DOI] [PubMed] [Google Scholar]
  5. DAVIDSON N., WIDHOLM J., NANDI U. S., JENSEN R., OLIVERA B. M., WANG J. C. PREPARATION AND PROPERTIES OF NATIVE CRAB DAT. Proc Natl Acad Sci U S A. 1965 Jan;53:111–118. doi: 10.1073/pnas.53.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Espejo R. T., Canelo E. S. Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology. 1968 Apr;34(4):738–747. doi: 10.1016/0042-6822(68)90094-9. [DOI] [PubMed] [Google Scholar]
  7. Hudson B., Vinograd J. Sedimentation velocity properties of complex mitochondrial DNA. Nature. 1969 Jan 25;221(5178):332–337. doi: 10.1038/221332a0. [DOI] [PubMed] [Google Scholar]
  8. JANSZ H. S., POUWELS P. H. STRUCTURE OF THE REPLICATIVE FORM OF BACTERIOPHAGE 0X174. Biochem Biophys Res Commun. 1965 Feb 17;18:589–594. doi: 10.1016/0006-291x(65)90795-3. [DOI] [PubMed] [Google Scholar]
  9. LUZZATI V., MATHIS A., MASSON F., WITZ J. SUTURE TRANSITIONS OBSERVED IN DNA AND POLY A IN SOLUTION AS A FUNCTION OF TEMPERATURE AND PH. J Mol Biol. 1964 Oct;10:28–41. doi: 10.1016/s0022-2836(64)80025-5. [DOI] [PubMed] [Google Scholar]
  10. LUZZATI V., NICOLAIEFF A., MASSON F. [Structure of desoxyribonucleic acid in solution. Study by the diffusion of x-rays at small angles]. J Mol Biol. 1961 Apr;3:185–201. doi: 10.1016/s0022-2836(61)80045-4. [DOI] [PubMed] [Google Scholar]
  11. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  12. Opschoor A., Pouwels P. H., Knijnenburg C. M., Aten J. B. Viscosity and sedimentation of circular native deoxyribonucleic acid. J Mol Biol. 1968 Oct 14;37(1):13–20. doi: 10.1016/0022-2836(68)90070-3. [DOI] [PubMed] [Google Scholar]
  13. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  14. Sinsheimer R. L. Bacteriophage phi-X174 and related viruses. Prog Nucleic Acid Res Mol Biol. 1968;8:115–169. [PubMed] [Google Scholar]
  15. VINOGRAD J., BRUNER R., KENT R., WEIGLE J. Band-centrifugation of macromolecules and viruses in self-generating density gradients. Proc Natl Acad Sci U S A. 1963 Jun;49:902–910. doi: 10.1073/pnas.49.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. VINOGRAD J., MORRIS J., DAVIDSON N., DOVE W. F., Jr The bouyant behavior of viral and bacterial DNA in alkaline CsCl. Proc Natl Acad Sci U S A. 1963 Jan 15;49:12–17. doi: 10.1073/pnas.49.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vinograd J., Lebowitz J. Physical and topological properties of circular DNA. J Gen Physiol. 1966 Jul;49(6):103–125. doi: 10.1085/jgp.49.6.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vinograd J., Lebowitz J., Radloff R., Watson R., Laipis P. The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci U S A. 1965 May;53(5):1104–1111. doi: 10.1073/pnas.53.5.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. YOUNG E. T., 2nd, SINSHEIMER R. L. NOVEL INTRA-CELLULAR FORMS OF LAMBDA DNA. J Mol Biol. 1964 Dec;10:562–564. doi: 10.1016/s0022-2836(64)80080-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES