Abstract
Km (app) and kcat for the δchymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophan methyl ester and N-furylacryloyl-L-tryptophanamide were measured as a function of pH and ionic strength. The Km (app) values do not increase considerably above pH 9 for δ-chymotrypsin, as is the case with α-chymotrypsin. The observed kinetic difference between both enzymes at high pH suggests that the reversible inactivation of α-chymotrypsin at alkaline pH may involve the participation of tyrosine 146 or alanine 149 since both residues are present as chain termini in α-chymotrypsin but not in δ-chymotrypsin.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bender M. L., Gibian M. J., Whelan D. J. The alkaline pH dependence of chymotrypsin reactions: postulation of a pH-dependent intramolecular competitive inhibition. Proc Natl Acad Sci U S A. 1966 Sep;56(3):833–839. doi: 10.1073/pnas.56.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandt K. G., Himoe A., Hess G. P. Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. 3. Determination of individual rate constants and enzyme-substrate binding constants for specific amide and ester substrates. J Biol Chem. 1967 Sep 10;242(17):3973–3982. [PubMed] [Google Scholar]
- DIXON M. The effect of pH on the affinities of enzymes for substrates and inhibitors. Biochem J. 1953 Aug;55(1):161–170. doi: 10.1042/bj0550161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLADNER J. A., NEURATH H. Carboxyl terminal groups of proteolytic enzymes. II. Chymotrypsins. J Biol Chem. 1954 Feb;206(2):911–924. [PubMed] [Google Scholar]
- Glazer A. N., Sanger F. The iodination of chymotrypsinogen. Biochem J. 1964 Jan;90(1):92–98. doi: 10.1042/bj0900092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himoe A., Hess G. P. On the elucidation of the pH dependence of chymotrypsin catalyzed reactions at alkaline pH. Biochem Biophys Res Commun. 1966 May 3;23(3):234–239. doi: 10.1016/0006-291x(66)90533-x. [DOI] [PubMed] [Google Scholar]
- Himoe A., Parks P. C., Hess G. P. Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. I. The pH dependence of the catalytic hydrolysis of N-acetyl-L-tryptophanamide by three forms of the enzyme at alkaline pH. J Biol Chem. 1967 Mar 10;242(5):919–929. [PubMed] [Google Scholar]
- Labouesse J., Gervais M. Preparation of chemically defined epsilon N-acetylated trypsin. Eur J Biochem. 1967 Sep;2(2):215–223. doi: 10.1111/j.1432-1033.1967.tb00127.x. [DOI] [PubMed] [Google Scholar]
- McConn J., Fasman G. D., Hess G. P. Conformation of the high pH form of chymotrypsin. J Mol Biol. 1969 Feb 14;39(3):551–562. doi: 10.1016/0022-2836(69)90145-4. [DOI] [PubMed] [Google Scholar]
- McConn J., Ku E., Odell C., Czerlinski G., Hess G. P. Conformation and activity of chymotrypsin: the pH-dependent, substrate-induced proton uptake. Science. 1968 Jul 19;161(3838):274–276. doi: 10.1126/science.161.3838.274. [DOI] [PubMed] [Google Scholar]
- Oppenheimer H. L., Labouesse B., Hess G. P. Implication of an ionizing group in the control of conformation and activity of chymotrypsin. J Biol Chem. 1966 Jun 10;241(11):2720–2730. [PubMed] [Google Scholar]
- SCHONBAUM G. R., ZERNER B., BENDER M. L. The spectrophotometric determination of the operational normality of an alpha-chymotrypsin solution. J Biol Chem. 1961 Nov;236:2930–2935. [PubMed] [Google Scholar]
- Sanger F. The free amino groups of insulin. Biochem J. 1945;39(5):507–515. doi: 10.1042/bj0390507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigler P. B., Blow D. M., Matthews B. W., Henderson R. Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J Mol Biol. 1968 Jul 14;35(1):143–164. doi: 10.1016/s0022-2836(68)80043-9. [DOI] [PubMed] [Google Scholar]
