Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Aug;63(4):1343–1350. doi: 10.1073/pnas.63.4.1343

MECHANISM OF DNA CHAIN GROWTH, III. EQUAL ANNEALING OF T4 NASCENT SHORT DNA CHAINS WITH THE SEPARATED COMPLEMENTARY STRANDS OF THE PHAGE DNA*

Kazunori Sugimoto 1, Tuneko Okazaki 1, Yasuo Imae 1, Reiji Okazaki 1
PMCID: PMC223470  PMID: 5260937

Abstract

Nascent short DNA chains isolated from T4-infected E. coli under a variety of conditions anneal equally to the separated complementary phage DNA strands. The samples examined include: pulse-labeled short chains isolated by alkaline sucrose gradient sedimentation from the T4D (wild type)-infected cells in both the early and late stages of phage DNA synthesis; nascent chains accumulated during ligase inhibition of T4 ts B20-infected cells; and the single-stranded nascent short chains isolated from T4D-infected cells by mild procedures involving no denaturation treatment. The results are consistent with the hypothesis that both strands of DNA are synthesized discontinuously.

Full text

PDF
1343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen S. N., Hurwitz J. Transcription of complementary strands of phage lambda-DNA in vivo and in vitro. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1759–1766. doi: 10.1073/pnas.57.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  3. Guha A., Szybalski W. Fractionation of the complementary strands of coliphage T4 DNA based on the asymmetric distribution of the poly U and poly U,G binding sites. Virology. 1968 Apr;34(4):608–616. doi: 10.1016/0042-6822(68)90082-2. [DOI] [PubMed] [Google Scholar]
  4. Hosoda J., Mathews E. DNA replication in vivo by a temperature-sensitive polynucleotide ligase mutant of T4. Proc Natl Acad Sci U S A. 1968 Nov;61(3):997–1004. doi: 10.1073/pnas.61.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LePecq J. B., Baldwin R. L. The starting point and direction of lambda DNA replication. Cold Spring Harb Symp Quant Biol. 1968;33:609–620. doi: 10.1101/sqb.1968.033.01.067. [DOI] [PubMed] [Google Scholar]
  6. MATTHEWS R. E. Properties of nucleoprotein fractions isolated from turnip yellow mosaic virus preparations. Virology. 1960 Dec;12:521–539. doi: 10.1016/0042-6822(60)90176-8. [DOI] [PubMed] [Google Scholar]
  7. Newman J., Hanawalt P. Intermediates in T4 DNA replication in a T4 ligase deficient strain. Cold Spring Harb Symp Quant Biol. 1968;33:145–150. doi: 10.1101/sqb.1968.033.01.018. [DOI] [PubMed] [Google Scholar]
  8. Newman J., Hanawalt P. Role of polynucleotide ligase in T4 DNA replication. J Mol Biol. 1968 Aug 14;35(3):639–642. doi: 10.1016/s0022-2836(68)80020-8. [DOI] [PubMed] [Google Scholar]
  9. Oishi M. Studies of DNA replication in vivo, II. Evidence for the second intermediate. Proc Natl Acad Sci U S A. 1968 Jun;60(2):691–698. doi: 10.1073/pnas.60.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oishi M. Studies of DNA replication in vivo. I. Isolation of the first intermediate of DNA replication in bacteria as single-stranded DNA. Proc Natl Acad Sci U S A. 1968 May;60(1):329–336. doi: 10.1073/pnas.60.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Okazaki R., Okazaki T., Sakabe K., Sugimoto K. Mechanism of DNA replication possible discontinuity of DNA chain growth. Jpn J Med Sci Biol. 1967 Jun;20(3):255–260. [PubMed] [Google Scholar]
  12. Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598–605. doi: 10.1073/pnas.59.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sadowski P., Ginsberg B., Yudelevich A., Feiner L., Hurwitz J. Enzymatic mechanisms of the repair and breakage of DNA. Cold Spring Harb Symp Quant Biol. 1968;33:165–177. doi: 10.1101/sqb.1968.033.01.020. [DOI] [PubMed] [Google Scholar]
  14. Sakabe K., Okazaki R. A unique property of the replicating region of chromosomal DNA. Biochim Biophys Acta. 1966 Dec 21;129(3):651–654. doi: 10.1016/0005-2787(66)90088-8. [DOI] [PubMed] [Google Scholar]
  15. Sugimoto K., Okazaki T., Okazaki R. Mechanism of DNA chain growth, II. Accumulation of newly synthesized short chains in E. coli infected with ligase-defective T4 phages. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1356–1362. doi: 10.1073/pnas.60.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tomizawa J., Ogawa T. Replication of phage lambda DNA. Cold Spring Harb Symp Quant Biol. 1968;33:533–551. doi: 10.1101/sqb.1968.033.01.061. [DOI] [PubMed] [Google Scholar]
  17. Tsukada K., Moriyama T., Lynch W. E., Lieberman I. Polydeoxynucleotide intermediates in DNA replication in regenerating liver. Nature. 1968 Oct 12;220(5163):162–164. doi: 10.1038/220162a0. [DOI] [PubMed] [Google Scholar]
  18. Yudelevich A., Ginsberg B., Hurwitz J. Discontinuous synthesis of DNA during replication. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1129–1136. doi: 10.1073/pnas.61.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES