Abstract
Nuclear magnetic resonance spectroscopy (100-MHz proton) was used to study the low-spin (S = 1/2) azide derivatives of human adult (α2β2), human fetal (α2γ2), Zürich (α2β263 His → Arg), and horse (α2′β2′) methemoglobins, as well as whale metmyoglobin in 0.1 M deuterated phosphate at pD 7 and at 31°C. The experimental results indicate that the azide-bound heme groups of the α- and β-chains in human adult methemoglobin and of the α- and γ-chains in fetal methemoglobin are not equivalent. The affinity of the β- or γ-chain for azide ion appears larger than that of the α-chain. The nuclar magnetic resonance spectrum of hemoglobin Zürich shows that the environment of the azide-heme complex in the abnormal β-chain is altered by the substitution of arginine for histidine in the β-63 position, while the α-heme environment remains unaffected.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonini E. Hemoglobin and its reaction with ligands. Science. 1967 Dec 15;158(3807):1417–1425. doi: 10.1126/science.158.3807.1417. [DOI] [PubMed] [Google Scholar]
- BRAUNITZER G., HILSE K., RUDLOFF V., HILSCHMANN N. THE HEMOGLOBINS. Adv Protein Chem. 1964;19:1–71. doi: 10.1016/s0065-3233(08)60188-6. [DOI] [PubMed] [Google Scholar]
- Coughey W. S., Alben J. O., McCoy S., Boyer S. H., Charache S., Hathaway P. Differences in the infrared stretching frequency of carbon monoxide bound to abnormal hemoglobins. Biochemistry. 1969 Jan;8(1):59–62. doi: 10.1021/bi00829a009. [DOI] [PubMed] [Google Scholar]
- Davis D. G., Mock N. L., Laman V. R., Ho C. Nuclear magnetic resonance studies of hemoglobins. J Mol Biol. 1969 Mar 14;40(2):311–313. doi: 10.1016/0022-2836(69)90480-x. [DOI] [PubMed] [Google Scholar]
- Dozy A. M., Kleihauer E. F., Huisman T. H. Studies on the heterogeneity of hemoglobin. 13. Chromatography of various human and animal hemoglobin types on DEAE-Sephadex. J Chromatogr. 1968 Feb 20;32(4):723–727. doi: 10.1016/s0021-9673(01)80551-3. [DOI] [PubMed] [Google Scholar]
- Epstein H. F., Stryer L. Kinetics of azide binding to normal and mutant ferrihemoglobins as evidence for subunit interaction. J Mol Biol. 1968 Feb 28;32(1):113–120. doi: 10.1016/0022-2836(68)90149-6. [DOI] [PubMed] [Google Scholar]
- HITZIG W. H., FRICK P. G., BETKE K., HUISMAN T. H. [Hemoglobin Zuerich: a new hemoglobin anomaly with sulfonamide-induced inclusion body anemia]. Helv Paediatr Acta. 1960 Dec;15:499–514. [PubMed] [Google Scholar]
- Kurland R. J., Davis D. G., Ho C. Paramagnetic proton nuclear magnetic resonance shifts of metmyoglobin, methemoglobin, and hemin derivatives. J Am Chem Soc. 1968 May 8;90(10):2700–2701. doi: 10.1021/ja01012a048. [DOI] [PubMed] [Google Scholar]
- MULLER C. J., KINGMA S. Haemoglobin Zurich: alpha 2A beta 2-63 Arg. Biochim Biophys Acta. 1961 Jul 8;50:595–595. doi: 10.1016/0006-3002(61)90028-2. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
- Wüthrich K., Shulman R. G., Peisach J. High-resolution proton magnetic resonance spectra of sperm whale cyanometmyoglobin. Proc Natl Acad Sci U S A. 1968 Jun;60(2):373–380. doi: 10.1073/pnas.60.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wüthrich K., Shulman R. G., Yamane T. Proton magnetic resonance studies of human cyanomethemoglobin. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1199–1206. doi: 10.1073/pnas.61.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZADE-OPPEN A. M. SEPARATION OF HEMOGLOBIN A AND F BY CATION EXCHANGE DEXTRAN GELS. Scand J Clin Lab Invest. 1963;15:491–496. [PubMed] [Google Scholar]
