Abstract
Evidence is presented to show that the initiation of DNA replication in E. coli 555-7 requires synthesis of a protein whose production is correlated with total protein synthesis. Once replication is initiated, however, reinitiation will occur if all further protein synthesis is prevented; a small amount of protein synthesis is sufficient to prevent this unregulated reinitiation. This shows that the initiation of DNA replication is under negative control. A mechanism for the control of DNA replication is proposed; in this mechanism a replication repressor is synthesized periodically, while an antirepressor protein is synthesized continuously. Derepression of initiation results after sufficient accumulation of the antirepressor protein, and repression is re-established by repressor synthesis after the initiation of replication.
Full text
PDF![1410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/e54527f8e84b/pnas00110-0396.png)
![1411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/a193f36af28f/pnas00110-0397.png)
![1412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/5a93547924c7/pnas00110-0398.png)
![1413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/3b4382212ec4/pnas00110-0399.png)
![1414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/ee5ec308fe18/pnas00110-0400.png)
![1415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/c33e65941265/pnas00110-0401.png)
![1416](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/58efeff065ca/pnas00110-0402.png)
![1417](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/223480/2cf208d15cb6/pnas00110-0403.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker R. F., Yanofsky C. The periodicity of RNA polymerase initiations: a new regulatory feature of transcription. Proc Natl Acad Sci U S A. 1968 May;60(1):313–320. doi: 10.1073/pnas.60.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein W. Transposition of the lac region of Escherichia coli. IV. Escape from repression in bacteriophage-carried lac genes. J Mol Biol. 1967 Dec 28;30(3):529–543. doi: 10.1016/0022-2836(67)90366-x. [DOI] [PubMed] [Google Scholar]
- LARK K. G., REPKO T., HOFFMAN E. J. THE EFFECT OF AMINO ACID DEPRIVATION ON SUBSEQUENT DEOXYRIBONUCLEIC ACID REPLICATION. Biochim Biophys Acta. 1963 Sep 17;76:9–24. [PubMed] [Google Scholar]
- MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
- PRITCHARD R. H., LARK K. G. INDUCTION OF REPLICATION BY THYMINE STARVATION AT THE CHROMOSOME ORIGIN IN ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:288–307. doi: 10.1016/s0022-2836(64)80208-4. [DOI] [PubMed] [Google Scholar]
- Ptashne M. Specific binding of the lambda phage repressor to lambda DNA. Nature. 1967 Apr 15;214(5085):232–234. doi: 10.1038/214232a0. [DOI] [PubMed] [Google Scholar]
- YOSHIKAWA H., O'SULLIVAN A., SUEOKA N. SEQUENTIAL REPLICATION OF THE BACILLUS SUBTILIS CHROMOSOME. 3. REGULATION OF INITIATION. Proc Natl Acad Sci U S A. 1964 Oct;52:973–980. doi: 10.1073/pnas.52.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]