Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Jul;63(3):948–955. doi: 10.1073/pnas.63.3.948

Na+-FACILITATED REACTIONS OF NEUTRAL AMINO ACIDS WITH A CATIONIC AMINO ACID TRANSPORT SYSTEM*

Halvor N Christensen 1, Mary E Handlogten 1, Edwin L Thomas 1
PMCID: PMC223544  PMID: 5259774

Abstract

The predominant basis for transport interactions between neutral and cationic amino acids in the Ehrlich ascites-tumor cell and the rabbit reticulocyte has been identified as a reaction of the neutral amino acid plus Na+ with the cationic amino acid transport system. This reaction is revealed both by a Na+-dependent transport inhibition by the neutral amino acid, and by mutual flux accelerations whereby the neutral amino acid and Na+ exchange for the cationic amino acid.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHRISTENSEN H. N. A TRANSPORT SYSTEM SERVING FOR MONO- AND DIAMINO ACIDS. Proc Natl Acad Sci U S A. 1964 Feb;51:337–344. doi: 10.1073/pnas.51.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHRISTENSEN H. N., RIGGS T. R. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J Biol Chem. 1952 Jan;194(1):57–68. [PubMed] [Google Scholar]
  3. Christensen H. N., Antonioli J. A. Cationic amino acid transport in the rabbit reticulocyte. Na+-dependent inhibition of Na+-independent transport. J Biol Chem. 1969 Mar 25;244(6):1497–1504. [PubMed] [Google Scholar]
  4. Christensen H. N., Handlogten M. E., Lam I., Tager H. S., Zand R. A bicyclic amino acid to improve discriminations among transport systems. J Biol Chem. 1969 Mar 25;244(6):1510–1520. [PubMed] [Google Scholar]
  5. Christensen H. N., Handlogten M. E. Modes of mediated exodus of amino acids from the Ehrlich ascites tumor cell. J Biol Chem. 1968 Oct 25;243(20):5428–5438. [PubMed] [Google Scholar]
  6. Christensen H. N., Liang M., Archer E. G. A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem. 1967 Nov 25;242(22):5237–5246. [PubMed] [Google Scholar]
  7. Christensen H. N., Liang M. Transport of diamino acids into the Ehrlich cell. J Biol Chem. 1966 Dec 10;241(23):5542–5551. [PubMed] [Google Scholar]
  8. Christensen H. N. Some special kinetic problems of transport. Adv Enzymol Relat Areas Mol Biol. 1969;32:1–20. doi: 10.1002/9780470122778.ch1. [DOI] [PubMed] [Google Scholar]
  9. Eddy A. A. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem J. 1968 Jul;108(3):489–498. doi: 10.1042/bj1080489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillespie E. Homo- and hetero-exchange diffusion of amino acids in Ehrlich ascites carcinoma cells. Biochim Biophys Acta. 1967;135(5):1016–1029. doi: 10.1016/0005-2736(67)90072-7. [DOI] [PubMed] [Google Scholar]
  11. KAMIN H., HANDLER P. Effect of infusion of single amino acids upon excretion of other amino acids. Am J Physiol. 1951 Mar;164(3):654–661. doi: 10.1152/ajplegacy.1951.164.3.654. [DOI] [PubMed] [Google Scholar]
  12. Margolis R. K., Lajtha A. Ion dependence of amino acid uptake in brain slices. Biochim Biophys Acta. 1968 Nov 5;163(3):374–385. doi: 10.1016/0005-2736(68)90122-3. [DOI] [PubMed] [Google Scholar]
  13. Munck B. G. Amino acid transport by the small intestine of the rat. On the counterflow phenomenon as a cause of the accelerating effect of leucine on the transintestinal transport of diamino acids. Biochim Biophys Acta. 1966 Jun 8;120(2):282–291. doi: 10.1016/0926-6585(66)90348-7. [DOI] [PubMed] [Google Scholar]
  14. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  15. RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
  16. VIDAVER G. A. MUCATE INHIBITION OF GLYCINE ENTRY INTO PIGEON RED CELLS. Biochemistry. 1964 Jun;3:799–803. doi: 10.1021/bi00894a012. [DOI] [PubMed] [Google Scholar]
  17. Wheeler K. P., Christensen H. N. Interdependent fluxes of amino acids and sodium ion in the pigeon red blood cell. J Biol Chem. 1967 Sep 10;242(17):3782–3788. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES