Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Jun;63(2):302–309. doi: 10.1073/pnas.63.2.302

HIGH EFFICIENCY, HETEROSIS, AND HOMEOSTASIS IN MITOCHONDRIA OF WHEAT*

Igor V Sarkissian 1, Hari K Srivastava 1
PMCID: PMC223565  PMID: 16591763

Abstract

Mitochondria of a wheat hybrid 31MS × 28 when assayed polarographically exceeded mitochondria of parents of the hybrid in ADP:O ratios and in respiratory control when they utilized alpha-ketoglutarate, malate, and succinate. The ADP:O ratios of the hybrid mitochondria for the three substrates were 5.8 ± 0.2, 3.8 ± 0.15, and 3.4 ± 0.2, respectively. High P:O ratios were also observed in manometric assays. Mixtures of parental mitochondria exceeded averages of the parents, i.e., they exhibited complementation and approached activities of hybrid mitochondria. Complementation was observed only with NAD-linked substrates. Dinitrophenol uncoupled all mitochondria, but uncoupling was smallest in hybrid mitochondria. Hybrid mitochondria had the greatest ATPase activity. Mixtures exhibited complementation in ATPase activity. ATPase activity was stimulated least in hybrid mitochondria and in parental mixtures. The results were discussed from the point of view that the high P:) ratios gave us direct evidence that heterosis is indeed characterized by high efficiency. It is also pointed out that because of consistent repeatability and their specificity to hybrids, P:O ratios studied in rapidly isolated mitochondria of hybrids may give us revealing information on supramaximal efficiency of oxidative phosphorylation.

Full text

PDF
302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEYER R. E., KENNISON R. D. Relationship between prothrombin time and oxidative phosphorylation in chick liver mitochondria. Arch Biochem Biophys. 1959 Sep;84:63–70. doi: 10.1016/0003-9861(59)90554-5. [DOI] [PubMed] [Google Scholar]
  3. BRIERLEY G. P. ON THE EFFICIENCY OF OXIDATIVE PHOSPHORYLATION IN ISOLATED HEART MITOCHONDRIA. Biochem Biophys Res Commun. 1965 May 3;19:500–505. doi: 10.1016/0006-291x(65)90153-1. [DOI] [PubMed] [Google Scholar]
  4. Boyer P. D. Phosphohistidine. Science. 1963 Sep 20;141(3586):1147–1153. doi: 10.1126/science.141.3586.1147. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. A simple and rapid assay of oxidative phosphorylation. Nature. 1955 Jun 25;175(4469):1120–1121. doi: 10.1038/1751120a0. [DOI] [PubMed] [Google Scholar]
  6. Caspari E. The Inheritance of the Difference in the Composition of the Liver Mitochondria between Two Mouse Strains. Genetics. 1956 Jan;41(1):107–117. doi: 10.1093/genetics/41.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GURBAN C., CRISTEA E. HIGH EFFICIENCY OF OXIDATIVE PHOSPHORYLATION IN INTACT MITOCHONDRIA. Biochim Biophys Acta. 1965 Feb 22;96:195–205. [PubMed] [Google Scholar]
  8. HOWLAND J. L. PHOSPHORYLATION COUPLED TO THE OXIDATION OF TETRAMETHYL-P1-PHENYLENEDIAMINE IN RAT-LIVER MITOCHONDRIA. Biochim Biophys Acta. 1963 Nov 8;77:419–429. doi: 10.1016/0006-3002(63)90516-x. [DOI] [PubMed] [Google Scholar]
  9. Haslam J. Energy-linked reactions in mitochondria: manometric errors in the determination of P-o ratios. Biochim Biophys Acta. 1965 Jul 29;105(1):184–187. doi: 10.1016/s0926-6593(65)80187-4. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lenaz G., Beyer R. E. Manometric uncertainties in connection with reports of high phosphorus to oxygen ratios. J Biol Chem. 1965 Sep;240(9):3653–3659. [PubMed] [Google Scholar]
  12. McDaniel R. G., Sarkissian I. V. Heterosis: complementation by mitochondria. Science. 1966 Jun 17;152(3729):1640–1642. doi: 10.1126/science.152.3729.1640. [DOI] [PubMed] [Google Scholar]
  13. McDaniel R. G., Sarkissian I. V. Mitochondrial heterosis in maize. Genetics. 1968 Aug;59(4):465–475. doi: 10.1093/genetics/59.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Naqvi S. M., Gordon S. A. Auxin Transport in Flowering and Vegetative Shoots of Coleus blumei Benth. Plant Physiol. 1965 Jan;40(1):116–118. doi: 10.1104/pp.40.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sarkissiaiv, McDaniel R. G. Mitochondrial polymorphism in maize. I. Putative evidence for de novo origin of hybrid-specific mitochondria. Proc Natl Acad Sci U S A. 1967 May;57(5):1262–1266. doi: 10.1073/pnas.57.5.1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sarkissian I. V., Srivastava H. K. Mitochondrial Polymorphism in Maize. II. Further Evidence of Correlation of Mitochondrial Complementation and Heterosis. Genetics. 1967 Dec;57(4):843–850. doi: 10.1093/genetics/57.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sarkissian I. V., Srivastava H. K. On methods of isolation of active, tightly coupled mitochondria of wheat seedlings. Plant Physiol. 1968 Sep;43(9):1406–1410. doi: 10.1104/pp.43.9.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith A. L., Hansen M. Evidence for P/O ratios approaching 6 in mitochondrial oxidative phosphorylation. Biochem Biophys Res Commun. 1964 Apr 22;15(5):431–435. doi: 10.1016/0006-291x(64)90480-2. [DOI] [PubMed] [Google Scholar]
  19. Wiskich J. T., Young R. E., Biale J. B. Metabolic Processes in Cytoplasmic Particles of the Avocado Fruit. VI. Controlled Oxidations and Coupled Phosphorylations. Plant Physiol. 1964 May;39(3):312–322. doi: 10.1104/pp.39.3.312. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES