Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Jun;63(2):364–369. doi: 10.1073/pnas.63.2.364

THE EFFECTS OF RESERPINE, α-METHYLTYROSINE, AND L-3,4-DIHYDROXYPHENYLALANINE ON BRAIN TYROSINE TRANSAMINASE*

James W Gibb 1,2, Jerry G Webb 1,2,
PMCID: PMC223573  PMID: 4389816

Abstract

The effects of a variety of pharmacological and physiological manipulations on the activity of hepatic tyrosine transminase have been extensively investigated. Brain tyrosine transaminase, however, has received only limited attention. Since tyrosine transaminase may be important in the regulation of catecholamine biosynthesis in the brain, the effects of agents affecting catecholamine storage and synthesis on brain tyrosine transamination were investigated. Transamination in the 12,000 × g fraction was measured by a radioactive procedure. α-Methyltyrosine and reserpine, agents which deplete brain catecholamines, decreased tyrosine transaminase activity. Administration of the catecholamine precursor, L-3,4-dihydroxyphenylalanine to the reserpine-and α-methyltyrosine-treated rats elevated the tyrosine transaminase activity to normal. The possible implications of these findings in the regulation of the biosynthesis of the catecholamines are discussed.

Full text

PDF
364

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRIDGE W. N. Liver and brain mitochondria. Biochem J. 1957 Nov;67(3):423–431. doi: 10.1042/bj0670423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod J., Black I. B. Suppression of the daily rhythm in tyrosine transaminase activity by acute elevation of norepinephrine. Nature. 1968 Oct 12;220(5163):161–162. doi: 10.1038/220161a0. [DOI] [PubMed] [Google Scholar]
  3. Black I. B., Axelrod J. Elevation and depression of hepatic tyrosine transaminase activity by depletion and repletion of norepinephrine. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1231–1234. doi: 10.1073/pnas.59.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CANELLAKIS Z. N., COHEN P. P. Purification studies of tyrosine-alpha-ketoglutaric acid transaminase. J Biol Chem. 1956 Sep;222(1):53–62. [PubMed] [Google Scholar]
  5. FONNUM F., HAAVALDSEN R., TANGEN O. TRANSAMINATION OF AROMATIC AMINO ACIDS IN RAT BRAIN. J Neurochem. 1964 Feb;11:109–118. doi: 10.1111/j.1471-4159.1964.tb06747.x. [DOI] [PubMed] [Google Scholar]
  6. Fonnum F., Larsen K. Purification and properties of dihydroxyphenylalanine transaminase from guinea pig brain. J Neurochem. 1965 Jul;12(7):589–598. doi: 10.1111/j.1471-4159.1965.tb04251.x. [DOI] [PubMed] [Google Scholar]
  7. George H., Gabay S. Brain aromatic aminotransferase. I. Purification and some properties of pig brain L-phenylalanine-2-oxoglutarate aminotransferase. Biochim Biophys Acta. 1968 Nov 19;167(3):555–566. doi: 10.1016/0005-2744(68)90045-4. [DOI] [PubMed] [Google Scholar]
  8. Holten D., Kenney F. T. Regulation of tyrosine alpha-ketoglutarate transaminase in rat liver. VI. Induction by pancreatic hormones. J Biol Chem. 1967 Oct 10;242(19):4372–4377. [PubMed] [Google Scholar]
  9. KENNEY F. T., FLORA R. M. Induction of tyrosine-alpha-ketoglutarate transaminase in rat liver. I. Hormonal nature. J Biol Chem. 1961 Oct;236:2699–2702. [PubMed] [Google Scholar]
  10. KENNEY F. T. Induction of tyrosine-alpha-ketoglutarate transaminase in rat liver. III. Immunochemical analysis. J Biol Chem. 1962 May;237:1610–1614. [PubMed] [Google Scholar]
  11. KRETCHMER N., MCNAMARA H. Certain aspects of tyrosine metabolism in the young. II. The tyrosine oxidizing system of fetal rat liver. J Clin Invest. 1956 Oct;35(10):1089–1093. doi: 10.1172/JCI103363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KUSCH T., HEINRICH I. [Modification of the activity of liver tryptophan-pyrrolase and tyrosine-alpha-ketoglutarate-transaminase by chlorpromazine and reserpine with reference to adrenal gland function]. Acta Biol Med Ger. 1963;10:554–560. [PubMed] [Google Scholar]
  13. LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
  14. LIN E. C., KNOX W. E. Specificity of the adaptive response to tyrosine-alpha-ketoglutarate transaminase in the rat. J Biol Chem. 1958 Nov;233(5):1186–1189. [PubMed] [Google Scholar]
  15. NAGATSU T., LEVITT M., UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910–2917. [PubMed] [Google Scholar]
  16. SPECTOR S., SJOERDSMA A., UDENFRIEND S. BLOCKADE OF ENDOGENOUS NOREPINEPHRINE SYNTHESIS BY ALPHA-METHYL-TYROSINE, AN INHIBITOR OF TYROSINE HYDROXYLASE. J Pharmacol Exp Ther. 1965 Jan;147:86–95. [PubMed] [Google Scholar]
  17. Wurtman R. J., Larin F. A sensitive and specific isotopic assay for the estimation of tyrosine transaminase. Biochem Pharmacol. 1968 May;17(5):817–818. doi: 10.1016/0006-2952(68)90018-x. [DOI] [PubMed] [Google Scholar]
  18. Wurtman R. J., Shoemaker W. J., Larin F., Zigmond M. Failure of brain norepinephrine depletion to extinguish the daily rhythm in hepatic tyrosine transaminase activity. Nature. 1968 Sep 7;219(5158):1049–1050. doi: 10.1038/2191049a0. [DOI] [PubMed] [Google Scholar]
  19. YUWILER A., GELLER E., SCHAPIRO S., SLATER G. G. ADRENOCORTICAL AND ENZYMIC EFFECTS OF IMIPRAMINE AND CHLORPROMAZINE. Biochem Pharmacol. 1965 Apr;14:621–623. doi: 10.1016/0006-2952(65)90234-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES