Abstract
Sköld and Buchanan1 have reported that there is a rapid loss of RNA polymerase activity in Escherichia coli B after infection with T4 bacteriophage. More recent studies on the mechanism of this inactivation have been made in this2 and other laboratories.3, 4 In this communication, we report the observation of a transient stimulation of RNA polymerase activity when measurement is made immediately after infection and when cells are ruptured by a gentle lysis procedure. The increase in activity is independent of the synthesis of protein. The activity in the extracts of infected cells is lost by treatment of the extract with antibody to E. coli RNA polymerase and is refractive to the inhibitory action of the antibiotic rifamycin. Hybridization experiments indicate that an RNA transcribed almost exclusively from a T4 DNA template is the product of incubation of extracts of infected cells with a reaction mixture containing an exogenous primer (salmon sperm DNA). These findings are consistent with the hypothesis that one of the first steps in phage infection is the formation of a transcription complex containing T4 DNA and E. coli RNA polymerase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony D. D., Zeszotek E., Goldthwait D. A. Initiation by the DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1966 Sep;56(3):1026–1033. doi: 10.1073/pnas.56.3.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BREMER H., KONRAD M. W. A COMPLEX OF ENZYMATICALLY SYNTHESIZED RNA AND TEMPLATE DNA. Proc Natl Acad Sci U S A. 1964 May;51:801–808. doi: 10.1073/pnas.51.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babinet C. A new method for the purification of RNA-polymerase. Biochem Biophys Res Commun. 1967 Mar 21;26(6):639–644. doi: 10.1016/s0006-291x(67)80119-0. [DOI] [PubMed] [Google Scholar]
- CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
- Furth J. J., Pizer L. I. Deoxyribonucleic acid-dependent ribonucleic acid synthesis in Escherichia coli infected with bacteriophage T2. J Mol Biol. 1966 Jan;15(1):124–135. doi: 10.1016/s0022-2836(66)80214-0. [DOI] [PubMed] [Google Scholar]
- Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
- Guthrie G. D., Buchanan J. M. Control of phage-induced enzymes in bacteria. Fed Proc. 1966 May-Jun;25(3):864–873. [PubMed] [Google Scholar]
- KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
- Munyon W., Paoletti E., Grace J. T., Jr RNA polymerase activity in purified infectious vaccinia virus. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2280–2287. doi: 10.1073/pnas.58.6.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Witten C., Mantei N., Echols H. Inhibition of host nucleic acid synthesis by bacteriophage T4: effect of chloramphenicol at various multiplicities of infection. J Mol Biol. 1966 May;17(1):273–278. doi: 10.1016/s0022-2836(66)80107-9. [DOI] [PubMed] [Google Scholar]
- Okamoto K., Mudd J. A., Mangan J., Huang W. M., Subbaiah T. V., Marmur J. Properties of the defective phage of Bacillus subtilis. J Mol Biol. 1968 Jun 28;34(3):413–428. doi: 10.1016/0022-2836(68)90169-1. [DOI] [PubMed] [Google Scholar]
- Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
- So A. G., Davie E. W., Epstein R., Tissières A. Effects of cations on DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1739–1746. doi: 10.1073/pnas.58.4.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THANG M. N., WILLIAMS F. R., GRUNBERG-MANAGO M. SYNTH'ESE IN VIVO DE LA POLYNUCL'EOTIDE PHOSPHORYLASE CHEZ ESCHERICHIA COLI. II. SYNTH'ESE DE NOVO DE LA POLYNUCL'EOTIDE PHOSPHORYLASE EN PRESENCE DE CHLORAMPH'ENICOL. Biochim Biophys Acta. 1963 Dec 20;76:572–588. doi: 10.1016/0006-3002(63)90083-0. [DOI] [PubMed] [Google Scholar]
- Terzi M. Studies on the mechanism of bacteriophage T4 interference with host metabolism. J Mol Biol. 1967 Aug 28;28(1):37–44. doi: 10.1016/s0022-2836(67)80075-5. [DOI] [PubMed] [Google Scholar]
- WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter G., Seifert W., Zillig W. Modified DNA-dependent RNA polymerase from E. coli infected with bacteriophage T4. Biochem Biophys Res Commun. 1968 Feb 15;30(3):240–247. doi: 10.1016/0006-291x(68)90441-5. [DOI] [PubMed] [Google Scholar]
- Wehrli W., Knüsel F., Staehelin M. Action of rifamycin on RNA-polymerase from sensitive and resistant bacteria. Biochem Biophys Res Commun. 1968 Jul 26;32(2):284–288. doi: 10.1016/0006-291x(68)90382-3. [DOI] [PubMed] [Google Scholar]
- Zimmerman S. B., Sandeen D. The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal Biochem. 1966 Feb;14(2):269–277. doi: 10.1016/0003-2697(66)90137-0. [DOI] [PubMed] [Google Scholar]