Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Mar;62(3):653–660. doi: 10.1073/pnas.62.3.653

SYNTHESIS OF A MODEL SYSTEM FOR THE PRIMARY ENERGY CONVERSION REACTIONS IN PHOTOSYNTHESIS*

Jui H Wang 1
PMCID: PMC223647  PMID: 4389747

Abstract

A model system is constructed which, like the photosynthetic apparatus of green plants, can convert light to chemical free energy through pigment-sensitized photooxidation of water. The system has two light-harvesting subunits connected electrically in series. Each subunit is made of a multimolecular layer of Zn(II)-tetraphenylporphyrin deposited on a clean aluminum surface and immersed in an aqueous mixture of potassium ferri- and ferrocyanide. Upon illumination by amber light, charge transfer takes place across more than 70 molecular layers of the pigment with a photoelectromotive force of 1.1 to 1.3 volts per subunit. With NADP as the electron acceptor and NADP-reductase as a mediator, the system can photooxidize water to oxygen gas. With these model experiments as a guide, a molecular mechanism for the primary energy conversion reactions in photosynthesis is formulated that offers a unified interpretation of most of the relevant observations reported in the literature.

Full text

PDF
653

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. Nature. 1954 Aug 28;174(4426):394–396. doi: 10.1038/174394a0. [DOI] [PubMed] [Google Scholar]
  2. Chance B., Lee C. P., Mela L. Control and conservation of energy in the cytochrome chain. Fed Proc. 1967 Sep;26(5):1341–1354. [PubMed] [Google Scholar]
  3. Chibisov A. K., Kariakin A. V., Evstigneev V. B. Pervichnye protsessy v reaktsii vzaimodeistviia khlorofilla s metilviologenom. Biofizika. 1966;11(6):983–990. [PubMed] [Google Scholar]
  4. Clayton R. K. The biophysical problems of photosynthesis. Science. 1965 Sep 17;149(3690):1346–1354. doi: 10.1126/science.149.3690.1346. [DOI] [PubMed] [Google Scholar]
  5. Cooper T. A., Brinigar W. S., Wang J. H. Characterization of the reaction intermediates in a model oxidative phosphorylation reaction. J Biol Chem. 1968 Nov 25;243(22):5854–5858. [PubMed] [Google Scholar]
  6. Eisenstein K. K., Wang J. H. Conversion of light to chemical free energy. I. Porphyrin-sensitized photoreduction of ferredoxin by glutathione. J Biol Chem. 1969 Apr 10;244(7):1720–1728. [PubMed] [Google Scholar]
  7. Forti G., Sturani E. On the structure and function of reduced nicotinamide adenine dinucleotide phosphate-cytochrome f reductase of spinach chloroplasts. Eur J Biochem. 1968 Feb;3(4):461–472. doi: 10.1111/j.1432-1033.1967.tb19553.x. [DOI] [PubMed] [Google Scholar]
  8. Fuhrhop J. H., Mauzerall D. The one-electron oxidation of magnesium octaethylporphin. J Am Chem Soc. 1968 Jul 3;90(14):3875–3876. doi: 10.1021/ja01016a057. [DOI] [PubMed] [Google Scholar]
  9. Harris R. A., Penniston J. T., Asai J., Green D. E. The conformational basis of energy conservation in membrane systems. II. Correlation between conformational change and functional states. Proc Natl Acad Sci U S A. 1968 Mar;59(3):830–837. doi: 10.1073/pnas.59.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jagendorf A. T. Acid-base transitions and phosphorylation by chloroplasts. Fed Proc. 1967 Sep;26(5):1361–1369. [PubMed] [Google Scholar]
  11. Komissarov G. G., Shumov Iu S. O vozmozhnosti fotoélektroliza vody v modeliiakh, soderzhashchikh fotosinteticheskie pigmenty, i v zelenom liste. Dokl Akad Nauk SSSR. 1968 Oct 11;182(5):1226–1229. [PubMed] [Google Scholar]
  12. Lardy H. A., Graven S. N., Estrada S. Specific induction and inhibition of cation and anion transport in mitochondria. Fed Proc. 1967 Sep;26(5):1355–1360. [PubMed] [Google Scholar]
  13. Levine R. P. Genetic dissection of photosynthesis. Science. 1968 Nov 15;162(3855):768–771. doi: 10.1126/science.162.3855.768. [DOI] [PubMed] [Google Scholar]
  14. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  15. McSwain B. D., Arnon D. I. Enhancement effects and the identity of the two photochemical reactions of photosynthesis. Proc Natl Acad Sci U S A. 1968 Nov;61(3):989–996. doi: 10.1073/pnas.61.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Metzner H. Lichtinduzierte Wasserspaltung im Photosynthese-Modell. Hoppe Seylers Z Physiol Chem. 1968 Nov;349(11):1586–1588. [PubMed] [Google Scholar]
  17. PAULING L., ITANO H. A. Sickle cell anemia a molecular disease. Science. 1949 Nov 25;110(2865):543–548. doi: 10.1126/science.110.2865.543. [DOI] [PubMed] [Google Scholar]
  18. Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
  19. TOLLIN G., GREEN G. Light-induced single electron transfer reactions between chlorophyll a and quinones in solution. I. Some general feature of kinetics and mechanism. Biochim Biophys Acta. 1962 Jul 16;60:524–538. doi: 10.1016/0006-3002(62)90871-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES