Abstract
Nonsulfur photosynthetic bacteria (Athiorhodaceae) exhibit a time-variable fluorescence in addition to a constant fluorescence. All species examined show upon aging a remarkable gain in the variable component at the expense of the constant component while the total fluorescence remains essentially invariant. This result can be rationalized by supposing a change in distribution of bacteriochlorophyll in photosynthetic units as cells age. Alternatively, one may assume operation of two photochemical systems—one cyclic and predominant in young cells, the other noncyclic and predominant in old cells. It is also noted that a hitherto unreported minor fluorescence with maximum emission at ∼ 860 nm exists in addition to the well-known main fluorescence band at ∼ 890 nm. The rise in variable fluorescence is associated with the main band, a result in accord with the notion that the bacteriochlorophyll component responsible and absorbing at 870 nm is directly in contact with the energy trap.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CLAYTON R. K. CHARACTERISTICS OF FLUORESCENCE AND DELAYED LIGHT EMISSION FROM GREEN PHOTOSYNTHETIC BACTERIA AND ALGAE. J Gen Physiol. 1965 Mar;48:633–646. doi: 10.1085/jgp.48.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen-Bazire G., Kunisawa R. SOME OBSERVATIONS ON THE SYNTHESIS AND FUNCTION OF THE PHOTOSYNTHETIC APPARATUS IN RHODOSPIRILLUM RUBRUM. Proc Natl Acad Sci U S A. 1960 Dec;46(12):1543–1553. doi: 10.1073/pnas.46.12.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cusanovich M. A., Bartsch R. G., Kamen M. D. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Biochim Biophys Acta. 1968 Feb 12;153(2):397–417. doi: 10.1016/0005-2728(68)90083-2. [DOI] [PubMed] [Google Scholar]
- Delosme R. Etude de l'induction de fluorescence des algues vertes et des chloroplastes au début d'une illumination intense. Biochim Biophys Acta. 1967 Jul 5;143(1):108–128. doi: 10.1016/0005-2728(67)90115-6. [DOI] [PubMed] [Google Scholar]
- Govindjee, Munday J. C., Jr, Papageorgiou G. Fluorescence studies with algae: changes with time and preillumination. Brookhaven Symp Biol. 1966;19:434–445. [PubMed] [Google Scholar]
- JOLIOT P., LAVOREL J. LES R'EACTIONS PRIMAIRES DE LA PHOTOSYNTH'ESE. Bull Soc Chim Biol (Paris) 1964;46:1607–1626. [PubMed] [Google Scholar]
- Kok B., Malkin S., Owens O., Forbush B. Observations on the reducing side of the O2-evolving photoact. Brookhaven Symp Biol. 1966;19:446–459. [PubMed] [Google Scholar]
- Lavorel J. Induction of Fluorescence in Quinone Poisoned Chlorella Cells. Plant Physiol. 1959 May;34(3):204–209. doi: 10.1104/pp.34.3.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morita S. Evidence for three photochemical systems in Chromatium D. Biochim Biophys Acta. 1968 Jan 15;153(1):241–247. doi: 10.1016/0005-2728(68)90166-7. [DOI] [PubMed] [Google Scholar]
- Sybesma C., Fowler C. F. Evidence for two light-driven reactions in the purple photosynthetic bacterium, Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1343–1348. doi: 10.1073/pnas.61.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VREDENBERG W. J., DUYSENS L. N. Transfer of energy from bacteriochlorophyll to a reaction centre during bacterial photosynthesis. Nature. 1963 Jan 26;197:355–357. doi: 10.1038/197355a0. [DOI] [PubMed] [Google Scholar]
- Zankel K. L., Reed D. W., Clayton R. K. Fluorescence and photochemical quenching in photosynthetic reaction centers. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1243–1249. doi: 10.1073/pnas.61.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
