Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1966 Feb;55(2):282–289. doi: 10.1073/pnas.55.2.282

A model for mRNA transcription suggested by some characteristics of 2-aminopurine mutagenesis in Salmonella.

P Margolin, F H Mukai
PMCID: PMC224137  PMID: 5328725

Full text

PDF
282

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUTZ-FREESE E., FREESE E. Induction of reverse mutations and cross reactivation of nitrous acid-treated phage T4. Virology. 1961 Jan;13:19–30. doi: 10.1016/0042-6822(61)90027-7. [DOI] [PubMed] [Google Scholar]
  2. BERG P., CHAMBERLIN M. ON THE TRANSCRIPTION OF DNA SEQUENCES BY RNA POLYMERASE. Bull Soc Chim Biol (Paris) 1964;46:1427–1440. [PubMed] [Google Scholar]
  3. CHAMBERLIN M., BERG P. MECHANISM OF RNA POLYMERASE ACTION: CHARACTERIZATION OF THE DNA-DEPENDENT SYNTHESIS OF POLYADENYLIC ACID. J Mol Biol. 1964 May;8:708–726. doi: 10.1016/s0022-2836(64)80120-0. [DOI] [PubMed] [Google Scholar]
  4. DEMEREC M., CAHN E. Studies of mutability in nutritionally deficient strains of Escherichia coli. I. Genetic analysis of five auxotrophic strains. J Bacteriol. 1953 Jan;65(1):27–36. doi: 10.1128/jb.65.1.27-36.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FREESE E., BAUTZ E., FREESE E. B. The chemical and mutagenic specificity of hydroxylamine. Proc Natl Acad Sci U S A. 1961 Jun 15;47:845–855. doi: 10.1073/pnas.47.6.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOODGAL S. H., POSTEL E. H. NITROUS ACID MUTATION OF TRANSFORMING DNA: CONSIDERATION OF MODE OF ACTION. Science. 1965 May 21;148(3673):1095–1097. doi: 10.1126/science.148.3673.1095. [DOI] [PubMed] [Google Scholar]
  7. HAMILTON L. D., FULLER W., REICH E. X-ray diffraction and molecular model building studies of the interaction of actinomycin with nucleic acids. Nature. 1963 May 11;198:538–540. doi: 10.1038/198538b0. [DOI] [PubMed] [Google Scholar]
  8. LOFTFIELD R. B. THE FREQUENCY OF ERRORS IN PROTEIN BIOSYNTHESIS. Biochem J. 1963 Oct;89:82–92. doi: 10.1042/bj0890082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MARGOLIN P. BIPOLARITY OF INFORMATION TRANSFER FROM THE SALMONELLA TYPHIMURIUM CHROMOSOME. Science. 1965 Mar 19;147(3664):1456–1458. doi: 10.1126/science.147.3664.1456. [DOI] [PubMed] [Google Scholar]
  10. MARGOLIN P. Genetic fine structure of the leucine operon in Salmonella. Genetics. 1963 Mar;48:441–457. doi: 10.1093/genetics/48.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RONEN A. BACK MUTATION OF LEUCINE-REQUIRING AUXOTROPHS OF SALMONELLA TYPHIMURIUM INDUCED BY DIETHYLSULPHATE. J Gen Microbiol. 1964 Oct;37:49–58. doi: 10.1099/00221287-37-1-49. [DOI] [PubMed] [Google Scholar]
  12. RUDNER R. Mutation as an error in base pairing. I. The mutagenicity of base analogues and their incorporation into the DNA of Salmonella typhimurium. Z Vererbungsl. 1961;92:336–360. [PubMed] [Google Scholar]
  13. STENT G. S. Mating in the reproduction of bacterial viruses. Adv Virus Res. 1958;5:95–149. doi: 10.1016/s0065-3527(08)60672-7. [DOI] [PubMed] [Google Scholar]
  14. Speyer J. F. Mutagenic DNA polymerase. Biochem Biophys Res Commun. 1965 Oct 8;21(1):6–8. doi: 10.1016/0006-291x(65)90417-1. [DOI] [PubMed] [Google Scholar]
  15. TOCCHINI-VALENTINI G. P., STODOLSKY M., AURISICCHIO A., SARNAT M., GRAZIOSI F., WEISS S. B., GEIDUSCHEK E. P. ON THE ASYMMETRY OF RNA SYNTHESIS IN VIVO. Proc Natl Acad Sci U S A. 1963 Nov;50:935–942. doi: 10.1073/pnas.50.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zubay G. A THEORY ON THE MECHANISM OF MESSENGER-RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1962 Mar;48(3):456–461. doi: 10.1073/pnas.48.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES