Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1966 Apr;55(4):928–934. doi: 10.1073/pnas.55.4.928

A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium.

M C Evans, B B Buchanan, D I Arnon
PMCID: PMC224252  PMID: 5219700

Full text

PDF
928

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACHOFEN R., BUCHANAN B. B., ARNON D. I. FERREDOXIN AS A REDUCTANT IN PYRUVATE SYNTHESIS BY A BACTERIAL EXTRACT. Proc Natl Acad Sci U S A. 1964 Apr;51:690–694. doi: 10.1073/pnas.51.4.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BANDURSKI R. S., GREINER C. M. The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J Biol Chem. 1953 Oct;204(2):781–786. [PubMed] [Google Scholar]
  3. BUCHANAN B. B., BACHOFEN R., ARNON D. I. ROLE OF FERREDOXIN IN THE REDUCTIVE ASSIMILATION OF CO2 AND ACETATE BY EXTRACTS OF THE PHOTOSYNTHETIC BACTERIUM, CHROMATIUM. Proc Natl Acad Sci U S A. 1964 Sep;52:839–847. doi: 10.1073/pnas.52.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker H. A., Kamen M. D. Carbon Dioxide Utilization in the Synthesis of Acetic Acid by Clostridium Thermoaceticum. Proc Natl Acad Sci U S A. 1945 Aug;31(8):219–225. doi: 10.1073/pnas.31.8.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchanan B. B., Evans M. C. The synthesis of alpha-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1212–1218. doi: 10.1073/pnas.54.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buchanan B. B., Evans M. C. The synthesis of phosphoendolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria. Biochem Biophys Res Commun. 1966 Mar 8;22(5):484–487. doi: 10.1016/0006-291x(66)90299-3. [DOI] [PubMed] [Google Scholar]
  7. Cooper R. A., Kornberg H. L. Net formation of phosphoenolpyruvate from pyruvate by Escherichia coli. Biochim Biophys Acta. 1965 Jul 8;104(2):618–620. doi: 10.1016/0304-4165(65)90374-0. [DOI] [PubMed] [Google Scholar]
  8. Evans M. C., Buchanan B. B. Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1420–1425. doi: 10.1073/pnas.53.6.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FULLER R. C., SMILLIE R. M., SISLER E. C., KORNBERG H. L. Carbon metabolism in Chromatium. J Biol Chem. 1961 Jul;236:2140–2149. [PubMed] [Google Scholar]
  10. Fredricks W. W., Stadtman E. R. The role of ferredoxin in the hydrogenase system from Clostridium kluyveri. J Biol Chem. 1965 Oct;240(10):4065–4071. [PubMed] [Google Scholar]
  11. HIRSCH P., SCHLEGEL H. G. CO2-FIXIERUNG DURCH KNALLGASBAKTERIEN. I. EINBAU UND FRAKTIONIERUNG. Arch Mikrobiol. 1963 Jul 18;46:44–52. [PubMed] [Google Scholar]
  12. HOARE D. S. The photo-assimilation of acetate by Rhodospirillum rubrum. Biochem J. 1963 May;87:284–301. doi: 10.1042/bj0870284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOSADA M., TREBST A. V., OGATA S., ARNON D. I. Equivalence of light and adenosine triphosphate in bacterial photosynthesis. Nature. 1960 Jun 4;186:753–760. doi: 10.1038/186753a0. [DOI] [PubMed] [Google Scholar]
  14. Peterkofsky A., Racker E. The reductive pentose phosphate cycle. III. Enzyme activities in cell-free extracts of photosynthetic organisms. Plant Physiol. 1961 Jul;36(4):409–414. doi: 10.1104/pp.36.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SMILLIE R. M., RIGOPOULOS N., KELLY H. Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria. Biochim Biophys Acta. 1962 Jan 29;56:612–614. doi: 10.1016/0006-3002(62)90618-2. [DOI] [PubMed] [Google Scholar]
  16. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
  17. Valentine R. C., Brill W. J., Wolfe R. S. ROLE OF FERREDOXIN IN PYRIDINE NUCLEOTIDE REDUCTION. Proc Natl Acad Sci U S A. 1962 Oct;48(10):1856–1860. doi: 10.1073/pnas.48.10.1856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WILDER M., VALENTINE R. C., AKAGI J. M. FERREDOXIN OF CLOSTRIDIUM THERMOSACCHAROLYTICUM. J Bacteriol. 1963 Oct;86:861–865. doi: 10.1128/jb.86.4.861-865.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES