Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1966 Aug;56(2):764–771. doi: 10.1073/pnas.56.2.764

Studies of missense suppression of the tryptophan synthetase A-protein mutant A36.

J Carbon, P Berg, C Yanofsky
PMCID: PMC224438  PMID: 5338831

Full text

PDF
764

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODY S., YANOFSKY C. Suppressor gene alteration of protein primary structure. Proc Natl Acad Sci U S A. 1963 Jul;50:9–16. doi: 10.1073/pnas.50.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brody S., Yanofsky C. Mechanism studies of suppressor-gene action. J Bacteriol. 1965 Sep;90(3):687–695. doi: 10.1128/jb.90.3.687-695.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capecchi M. R., Gussin G. N. Suppression in vitro: Identification of a Serine-sRNA as a "Nonsense" Suppressor. Science. 1965 Jul 23;149(3682):417–422. doi: 10.1126/science.149.3682.417. [DOI] [PubMed] [Google Scholar]
  5. Crawford I. P., Yanofsky C. THE FORMATION OF A NEW ENZYMATICALLY ACTIVE PROTEIN AS A RESULT OF SUPPRESSION. Proc Natl Acad Sci U S A. 1959 Aug;45(8):1280–1287. doi: 10.1073/pnas.45.8.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engelhardt D. L., Webster R. E., Wilhelm R. C., Zinder N. In vitro studies on the mechanism of suppression of a nonsense mutation. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1791–1797. doi: 10.1073/pnas.54.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guest J. R., Yanofsky C. Amino acid replacements associated with reversion and recombination within a coding unit. J Mol Biol. 1965 Jul;12(3):793–804. doi: 10.1016/s0022-2836(65)80328-x. [DOI] [PubMed] [Google Scholar]
  8. Gupta N. K., Khorana H. G. Missense suppression of the tryptophan synthetase A-protein mutant A78. Proc Natl Acad Sci U S A. 1966 Aug;56(2):772–779. doi: 10.1073/pnas.56.2.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HELINSKI D. R., YANOFSKY C. Correspondence between genetic data and the position of amino acid alteration in a proein. Proc Natl Acad Sci U S A. 1962 Feb;48:173–183. doi: 10.1073/pnas.48.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones D. S., Nishimura S., Khorana H. G. Studies on polynucleotides. LVI. Further syntheses, in vitro of copolypeptides containing two amino acids in alternating sequence dependent upon DNA-like polymers containing two nucleotides in alternating sequence. J Mol Biol. 1966 Apr;16(2):454–472. doi: 10.1016/s0022-2836(66)80185-7. [DOI] [PubMed] [Google Scholar]
  11. Kaplan S., Stretton A. O., Brenner S. Amber suppressors: efficiency of chain propagation and suppressor specific amino acids. J Mol Biol. 1965 Dec;14(2):528–533. doi: 10.1016/s0022-2836(65)80202-9. [DOI] [PubMed] [Google Scholar]
  12. MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishimura S., Jones D. S., Khorana H. G. Studies on polynucleotides. 48. The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J Mol Biol. 1965 Aug;13(1):302–324. doi: 10.1016/s0022-2836(65)80098-5. [DOI] [PubMed] [Google Scholar]
  14. PREISS J., DIECKMANN M., BERG P. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. IV. The formation of the 3'-hydroxyl terminal trinucleotide sequence of amino acid-acceptor ribonucleic acid. J Biol Chem. 1961 Jun;236:1748–1757. [PubMed] [Google Scholar]
  15. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  16. SMITH J. D. LYSINE PEPTIDE SYNTHESIS DEPENDENT ON SHORT-CHAIN POLYADENYLIC ACIDS. J Mol Biol. 1964 May;8:772–775. doi: 10.1016/s0022-2836(64)80125-x. [DOI] [PubMed] [Google Scholar]
  17. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  18. Weigert M. G., Lanka E., Garen A. Amino acid substitutions resulting from suppression of nonsense mutations. II. Glutamine insertion by the Su-2 gene; tyrosine insertion by the Su-3 gene. J Mol Biol. 1965 Dec;14(2):522–527. doi: 10.1016/s0022-2836(65)80201-7. [DOI] [PubMed] [Google Scholar]
  19. YAMANE T., SUEOKA N. CONSERVATION OF SPECIFICITY BETWEEN AMINO ACID ACCEPTOR RNA AND AMINO ACYL-SRNA SYNTHETASE. Proc Natl Acad Sci U S A. 1963 Dec;50:1093–1100. doi: 10.1073/pnas.50.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yanofsky C., Cox E. C., Horn V. The unusual mutagenic specificity of an E. Coli mutator gene. Proc Natl Acad Sci U S A. 1966 Feb;55(2):274–281. doi: 10.1073/pnas.55.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES