Skip to main content
Proceedings of the AMIA Symposium logoLink to Proceedings of the AMIA Symposium
. 2002:415–419.

Gene expression levels in different stages of progression in oral squamous cell carcinoma.

Winston Patrick Kuo 1, Tor-Kristian Jenssen 1, Peter J Park 1, Mark W Lingen 1, Rifat Hasina 1, Lucila Ohno-Machado 1
PMCID: PMC2244435  PMID: 12474876

Abstract

Oral squamous cell carcinoma (OSCC) is one of the most common cancer types worldwide. The prognosis for patients with this disease is generally poor and little is known about its progression. Gene expression studies may provide important insights to the molecular mechanisms of this disease. We analyzed gene expression data from a small panel of patients diagnosed with OSCC. Even with only 13 patient samples we were able to find genes with significant differences in expression levels between normal, dysplasia, and cancer samples. The largest differences in expression were generally found between normal and cancer samples, but significant differences were also found for several genes between dysplasia and the other two sample types.We also represent the significance levels of differentially expressed genes on the chromosome domain. The genes and genetic features we examine are potentially important factors on the molecular level in the progression of OSCC.

Full text

PDF
415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Emmert-Buck M. R., Bonner R. F., Smith P. D., Chuaqui R. F., Zhuang Z., Goldstein S. R., Weiss R. A., Liotta L. A. Laser capture microdissection. Science. 1996 Nov 8;274(5289):998–1001. doi: 10.1126/science.274.5289.998. [DOI] [PubMed] [Google Scholar]
  2. Enberg U., Farnebo L. O., Wedell A., Gröndal S., Thorén M., Grimelius L., Kjellman M., Bäckdahl M., Hamberger B. In vitro release of aldosterone and cortisol in human adrenal adenomas correlates to mRNA expression of steroidogenic enzymes for genes CYP11B2 and CYP17. World J Surg. 2001 Jul;25(7):957–966. doi: 10.1007/s00268-001-0035-2. [DOI] [PubMed] [Google Scholar]
  3. Gollin S. M. Chromosomal alterations in squamous cell carcinomas of the head and neck: window to the biology of disease. Head Neck. 2001 Mar;23(3):238–253. doi: 10.1002/1097-0347(200103)23:3<238::aid-hed1025>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  4. Greenlee R. T., Hill-Harmon M. B., Murray T., Thun M. Cancer statistics, 2001. CA Cancer J Clin. 2001 Jan-Feb;51(1):15–36. doi: 10.3322/canjclin.51.1.15. [DOI] [PubMed] [Google Scholar]
  5. Jenssen T. K., Laegreid A., Komorowski J., Hovig E. A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 2001 May;28(1):21–28. doi: 10.1038/ng0501-21. [DOI] [PubMed] [Google Scholar]
  6. Kannan K., Amariglio N., Rechavi G., Jakob-Hirsch J., Kela I., Kaminski N., Getz G., Domany E., Givol D. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene. 2001 Apr 26;20(18):2225–2234. doi: 10.1038/sj.onc.1204319. [DOI] [PubMed] [Google Scholar]
  7. Kundu G. C., Zhang Z., Mantile-Selvaggi G., Mandal A., Yuan C. J., Mukherjee A. B. Uteroglobin binding proteins: regulation of cellular motility and invasion in normal and cancer cells. Ann N Y Acad Sci. 2000;923:234–248. doi: 10.1111/j.1749-6632.2000.tb05533.x. [DOI] [PubMed] [Google Scholar]
  8. Leethanakul C., Patel V., Gillespie J., Pallente M., Ensley J. F., Koontongkaew S., Liotta L. A., Emmert-Buck M., Gutkind J. S. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene. 2000 Jun 29;19(28):3220–3224. doi: 10.1038/sj.onc.1203703. [DOI] [PubMed] [Google Scholar]
  9. Liu T. H., Li D. C., Gu C. F., Ye S. F. Carbamyl phosphate synthetase I. A novel marker for gastric carcinoma. Chin Med J (Engl) 1989 Aug;102(8):630–638. [PubMed] [Google Scholar]
  10. Mitelman F., Johansson B., Mandahl N., Mertens F. Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet. 1997 May;95(1):1–8. doi: 10.1016/s0165-4608(96)00252-x. [DOI] [PubMed] [Google Scholar]
  11. Nitta T., Sugihara K., Tsuyama S., Murata F. Immunohistochemical study of MUC1 mucin in premalignant oral lesions and oral squamous cell carcinoma: association with disease progression, mode of invasion, and lymph node metastasis. Cancer. 2000 Jan 15;88(2):245–254. doi: 10.1002/(sici)1097-0142(20000115)88:2<245::aid-cncr1>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  12. Pappas I. S., Vizirianakis I. S., Tsiftsoglou A. S. Cloning, sequencing and expression of a cDNA encoding the mouse L35a ribosomal protein during differentiation of murine erythroleukemia (MEL) cells. Cell Biol Int. 2001;25(7):629–634. doi: 10.1006/cbir.2000.0695. [DOI] [PubMed] [Google Scholar]
  13. Salem C. E., Markl I. D., Bender C. M., Gonzales F. A., Jones P. A., Liang G. PAX6 methylation and ectopic expression in human tumor cells. Int J Cancer. 2000 Jul 15;87(2):179–185. doi: 10.1002/1097-0215(20000715)87:2<179::aid-ijc4>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  14. Schena M. Genome analysis with gene expression microarrays. Bioessays. 1996 May;18(5):427–431. doi: 10.1002/bies.950180513. [DOI] [PubMed] [Google Scholar]
  15. Villaret D. B., Wang T., Dillon D., Xu J., Sivam D., Cheever M. A., Reed S. G. Identification of genes overexpressed in head and neck squamous cell carcinoma using a combination of complementary DNA subtraction and microarray analysis. Laryngoscope. 2000 Mar;110(3 Pt 1):374–381. doi: 10.1097/00005537-200003000-00008. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the AMIA Symposium are provided here courtesy of American Medical Informatics Association

RESOURCES