Skip to main content
The Journal of Headache and Pain logoLink to The Journal of Headache and Pain
. 2008 Jan 23;9(1):5–12. doi: 10.1007/s10194-008-0011-4

Treatment of migraine attacks based on the interaction with the trigemino-cerebrovascular system

Andrea Stephanie Link 1, Anikó Kuris 1, Lars Edvinsson 1,
PMCID: PMC2245994  PMID: 18217201

Abstract

Primary headaches such as migraine are among the most prevalent neurological disorders, affecting up to one-fifth of the adult population. The scientific work in the last decade has unraveled much of the pathophysiological background of migraine, which is now considered to be a neurovascular disorder. It has been discovered that the trigemino-cerebrovascular system plays a key role in migraine headache pathophysiology by releasing the potent vasodilator calcitonin gene-related peptide (CGRP). This neuropeptide is released in parallel with the pain and its concentration correlates well with the intensity of the headache. The development of drugs of the triptan class has provided relief for the acute attacks but at the cost of, mainly cardiovascular, side effects. Thus, the intention to improve treatment led to the development of small CGRP receptor antagonists such as olcegepant (BIBN4096BS) and MK-0974 that alleviate the acute migraine attack without acute side events. The purpose of this review is to give a short overview of the pathological background of migraine headache and to illustrate the mechanisms behind the actions of triptans and the promising CGRP receptor blockers.

Keywords: Trigemino-cerebrovascular system, CGRP, Triptan, Olcegepant, MK-0974

Full Text

The Full Text of this article is available as a PDF (250.0 KB).

Acknowledgments

Conflicts of interest

None.

References

  • 1.Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med. 2007;13(1):39–44. doi: 10.1016/j.molmed.2006.11.005. [DOI] [PubMed] [Google Scholar]
  • 2.Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–660. doi: 10.1038/nm0795-658. [DOI] [PubMed] [Google Scholar]
  • 3.Diener HC, May A. Positron emission tomography studies in acute migraine attacks. In: Sandler M, Ferrari M, Harnett S, editors. Migraine: pharmacology and genetics. London: Chapman and Hall; 1996. pp. 109–116. [Google Scholar]
  • 4.Afridi SK, Giffin NJ, Kaube H, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62(8):1270–1275. doi: 10.1001/archneur.62.8.1270. [DOI] [PubMed] [Google Scholar]
  • 5.Edvinsson L, Jansen Olesen I, Kingman TA, et al. Modification of vasoconstrictor responses in cerebral blood vessels by lesioning of the trigeminal nerve: possible involvement of CGRP. Cephalalgia. 1995;15(5):373–383. doi: 10.1046/j.1468-2982.1995.1505373.x. [DOI] [PubMed] [Google Scholar]
  • 6.McCulloch J, Uddman R, Kingman TA, et al. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci U S A. 1986;83(15):5731–5735. doi: 10.1073/pnas.83.15.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Strong AJ, Fabricius M, Boutelle MG, et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke. 2002;33(12):2738–2743. doi: 10.1161/01.STR.0000043073.69602.09. [DOI] [PubMed] [Google Scholar]
  • 8.Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33(1):48–56. doi: 10.1002/ana.410330109. [DOI] [PubMed] [Google Scholar]
  • 9.Edvinsson L, Uddman R. Neurobiology in primary headaches. Brain Res Brain Res Rev. 2005;48(3):438–456. doi: 10.1016/j.brainresrev.2004.09.007. [DOI] [PubMed] [Google Scholar]
  • 10.Tajti J, Uddman R, Moller S, et al. Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst. 1999;76(2–3):176–183. doi: 10.1016/S0165-1838(99)00024-7. [DOI] [PubMed] [Google Scholar]
  • 11.Edvinsson L, Ekman R, Jansen I, et al. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab. 1987;7(6):720–728. doi: 10.1038/jcbfm.1987.126. [DOI] [PubMed] [Google Scholar]
  • 12.Gulbenkian S, Uddman R, Edvinsson L. Neuronal messengers in the human cerebral circulation. Peptides. 2001;22(6):995–1007. doi: 10.1016/S0196-9781(01)00408-9. [DOI] [PubMed] [Google Scholar]
  • 13.Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–187. doi: 10.1002/ana.410280213. [DOI] [PubMed] [Google Scholar]
  • 14.Juhasz G, Zsombok T, Jakab B, et al. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia. 2005;25(3):179–183. doi: 10.1111/j.1468-2982.2005.00836.x. [DOI] [PubMed] [Google Scholar]
  • 15.Juhasz G, Zsombok T, Modos EA, et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain. 2003;106(3):461–470. doi: 10.1016/j.pain.2003.09.008. [DOI] [PubMed] [Google Scholar]
  • 16.Fanciullacci M, Alessandri M, Figini M, et al. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain. 1995;60(2):119–123. doi: 10.1016/0304-3959(94)00097-X. [DOI] [PubMed] [Google Scholar]
  • 17.Longmore J, Razzaque Z, Shaw D, et al. Comparison of the vasoconstrictor effects of rizatriptan and sumatriptan in human isolated cranial arteries: immunohistological demonstration of the involvement of 5-HT1B-receptors. Br J Clin Pharmacol. 1998;46(6):577–582. doi: 10.1046/j.1365-2125.1998.00821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Nilsson T, Longmore J, Shaw D, et al. Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br J Pharmacol. 1999;128(6):1133–1140. doi: 10.1038/sj.bjp.0702773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Smith D, Hill RG, Edvinsson L, et al. An immunocytochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D-receptor immunoreactivities are expressed by trigeminal sensory fibres. Cephalalgia. 2002;22(6):424–431. doi: 10.1046/j.1468-2982.2002.00378.x. [DOI] [PubMed] [Google Scholar]
  • 20.Hou M, Kanje M, Longmore J, et al. 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res. 2001;909(1–2):112–120. doi: 10.1016/S0006-8993(01)02645-2. [DOI] [PubMed] [Google Scholar]
  • 21.Longmore J, Shaw D, Smith D, et al. Differential distribution of 5HT1D- and 5HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs. Cephalalgia. 1997;17(8):833–842. doi: 10.1046/j.1468-2982.1997.1708833.x. [DOI] [PubMed] [Google Scholar]
  • 22.Martin GR. Pre-clinical pharmacology of zolmitriptan (Zomig; formerly 311C90), a centrally and peripherally acting 5HT1B/1D agonist for migraine. Cephalalgia. 1997;17(Suppl 18):4–14. doi: 10.1177/0333102497017S1802. [DOI] [PubMed] [Google Scholar]
  • 23.Tfelt-Hansen P. Parenteral vs. oral sumatriptan and naratriptan: plasma levels and efficacy in migraine. A comment. J Headache Pain. 2007;8:287–290. doi: 10.1007/s10194-007-0411-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tfelt-Hansen P, Young WB, Silberstein SD. Antiemetics, prokinetics, neuroleptic and miscellaneous drugs in the acute treatment of migraine. In: Olesen J, Goadsby PJ, Ramadan NM, Tfelt-Hansen P, Welch KMA, editors. The headaches. 3rd edn. Philadelphia: Lippincott Williams and Wilkins; 2006. pp. 505–513. [Google Scholar]
  • 25.Volans GN. Absorption of effervescent aspirin during migraine. Br Med J. 1974;4(5939):265–268. doi: 10.1136/bmj.4.5939.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Edvinsson L, Uddman E, Wackenfors A, et al. Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect. Clin Sci (Lond) 2005;109(3):335–342. doi: 10.1042/CS20050016. [DOI] [PubMed] [Google Scholar]
  • 27.Nilsson T, Longmore J, Shaw D, et al. Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol. 1999;372(1):49–56. doi: 10.1016/S0014-2999(99)00114-4. [DOI] [PubMed] [Google Scholar]
  • 28.MaassenVanDenBrink A, Broek RW, Vries R, et al. Craniovascular selectivity of eletriptan and sumatriptan in human isolated blood vessels. Neurology. 2000;55(10):1524–1530. doi: 10.1212/wnl.55.10.1524. [DOI] [PubMed] [Google Scholar]
  • 29.MaassenVanDenBrink A, Reekers M, Bax WA, et al. Coronary side-effect potential of current and prospective antimigraine drugs. Circulation. 1998;98(1):25–30. doi: 10.1161/01.cir.98.1.25. [DOI] [PubMed] [Google Scholar]
  • 30.Goadsby PJ. Migraine, allodynia, sensitisation and all of that. Eur Neurol. 2005;53(Suppl 1):10–16. doi: 10.1159/000085060. [DOI] [PubMed] [Google Scholar]
  • 31.Burstein R, Yarnitsky D, Goor-Aryeh I, et al. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–624. doi: 10.1002/1531-8249(200005)47:5<614::AID-ANA9>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 32.Bolay H, Reuter U, Dunn AK, et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–142. doi: 10.1038/nm0202-136. [DOI] [PubMed] [Google Scholar]
  • 33.Lovati C, D’Amico D, Rosa S, et al. Allodynia in different forms of migraine. Neurol Sci. 2007;28(Suppl 2):S220–221. doi: 10.1007/s10072-007-0781-5. [DOI] [PubMed] [Google Scholar]
  • 34.Burstein R, Jakubowski M. Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann Neurol. 2004;55(1):27–36. doi: 10.1002/ana.10785. [DOI] [PubMed] [Google Scholar]
  • 35.Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A. 2004;101(12):4274–4279. doi: 10.1073/pnas.0306147101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Mathew NT, Kailasam J, Seifert T. Clinical recognition of allodynia in migraine. Neurology. 2004;63(5):848–852. doi: 10.1212/01.wnl.0000137107.27585.f7. [DOI] [PubMed] [Google Scholar]
  • 37.Linde M, Mellberg A, Dahlof C. Subcutaneous sumatriptan provides symptomatic relief at any pain intensity or time during the migraine attack. Cephalalgia. 2006;26(2):113–121. doi: 10.1111/j.1468-2982.2005.00999.x. [DOI] [PubMed] [Google Scholar]
  • 38.Edvinsson L, Jansen I, Kingman TA, et al. Cerebrovascular responses to capsaicin in vitro and in situ. Br J Pharmacol. 1990;100(2):312–318. doi: 10.1111/j.1476-5381.1990.tb15801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Jansen-Olesen I, Mortensen A, Edvinsson L. Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalalgia. 1996;16(5):310–316. doi: 10.1046/j.1468-2982.1996.1605310.x. [DOI] [PubMed] [Google Scholar]
  • 40.Petersen KA, Birk S, Doods H, et al. Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat. Br J Pharmacol. 2004;143(6):697–704. doi: 10.1038/sj.bjp.0705966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–1110. doi: 10.1056/NEJMoa030505. [DOI] [PubMed] [Google Scholar]
  • 42.Ferrari MD, Roon KI, Lipton RB, et al. Oral triptans (serotonin 5-HT(1B/1D) agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet. 2001;358(9294):1668–1675. doi: 10.1016/S0140-6736(01)06711-3. [DOI] [PubMed] [Google Scholar]
  • 43.Oliver KR, Wainwright A, Edvinsson L, et al. Immunohistochemical localization of calcitonin receptor-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. J Cereb Blood Flow Metab. 2002;22(5):620–629. doi: 10.1097/00004647-200205000-00014. [DOI] [PubMed] [Google Scholar]
  • 44.Edvinsson L, Alm R, Shaw D, et al. Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells. Eur J Pharmacol. 2002;434(1–2):49–53. doi: 10.1016/S0014-2999(01)01532-1. [DOI] [PubMed] [Google Scholar]
  • 45.Petersen KA, Nilsson E, Olesen J, et al. Presence and function of the calcitonin gene-related peptide receptor on rat pial arteries investigated in vitro and in vivo. Cephalalgia. 2005;25(6):424–432. doi: 10.1111/j.1468-2982.2005.00869.x. [DOI] [PubMed] [Google Scholar]
  • 46.Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–1181. doi: 10.1038/sj.bjp.0705807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Zhang Z, Winborn CS, Marquez Prado B, et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci. 2007;27(10):2693–2703. doi: 10.1523/JNEUROSCI.4542-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–339. doi: 10.1038/30666. [DOI] [PubMed] [Google Scholar]
  • 49.Foord SM, Marshall FH. RAMPs: accessory proteins for seven transmembrane domain receptors. Trends Pharmacol Sci. 1999;20(5):184–187. doi: 10.1016/S0165-6147(99)01347-4. [DOI] [PubMed] [Google Scholar]
  • 50.Hay DL, Poyner DR, Sexton PM. GPCR modulation by RAMPs. Pharmacol Ther. 2006;109(1–2):173–197. doi: 10.1016/j.pharmthera.2005.06.015. [DOI] [PubMed] [Google Scholar]
  • 51.Evans BN, Rosenblatt MI, Mnayer LO, et al. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem. 2000;275(40):31438–31443. doi: 10.1074/jbc.M005604200. [DOI] [PubMed] [Google Scholar]
  • 52.Goadsby PJ. Calcitonin gene-related peptide antagonists as treatments of migraine and other primary headaches. Drugs. 2005;65(18):2557–2567. doi: 10.2165/00003495-200565180-00002. [DOI] [PubMed] [Google Scholar]
  • 53.Rudolf K, Eberlein W, Engel W, et al. Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists. 1-[N2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidi nyl]carbonyl]-d-tyrosyl]-l-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonist for clinical trials in acute migraine. J Med Chem. 2005;48(19):5921–5931. doi: 10.1021/jm0490641. [DOI] [PubMed] [Google Scholar]
  • 54.Doods H, Hallermayer G, Wu D, et al. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol. 2000;129(3):420–423. doi: 10.1038/sj.bjp.0703110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Gupta S, Mehrotra S, Avezaat CJ, et al. Characterisation of CGRP receptors in the human isolated middle meningeal artery. Life Sci. 2006;79(3):265–271. doi: 10.1016/j.lfs.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 56.Jansen-Olesen I, Jorgensen L, Engel U, et al. In-depth characterization of CGRP receptors in human intracranial arteries. Eur J Pharmacol. 2003;481(2–3):207–216. doi: 10.1016/j.ejphar.2003.09.021. [DOI] [PubMed] [Google Scholar]
  • 57.Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev. 1996;17(5):533–585. doi: 10.1210/er.17.5.533. [DOI] [PubMed] [Google Scholar]
  • 58.Saetrum Opgaard O, Hasbak P, Vries R, et al. Positive inotropy mediated via CGRP receptors in isolated human myocardial trabeculae. Eur J Pharmacol. 2000;397(2–3):373–382. doi: 10.1016/S0014-2999(00)00233-8. [DOI] [PubMed] [Google Scholar]
  • 59.Wallengren J, Ekman R, Sundler F. Occurrence and distribution of neuropeptides in the human skin. An immunocytochemical and immunochemical study on normal skin and blister fluid from inflamed skin. Acta Derm Venereol. 1987;67(3):185–192. [PubMed] [Google Scholar]
  • 60.Iovino M, Feifel U, Yong CL, et al. Safety, tolerability and pharmacokinetics of BIBN 4096 BS, the first selective small molecule calcitonin gene-related peptide receptor antagonist, following single intravenous administration in healthy volunteers. Cephalalgia. 2004;24(8):645–656. doi: 10.1111/j.1468-2982.2004.00726.x. [DOI] [PubMed] [Google Scholar]
  • 61.Edvinsson L. Calcitonin gene-related peptide (CGRP) in cerebrovascular disease. ScientificWorldJournal. 2002;2:1484–1490. doi: 10.1100/tsw.2002.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Petersen KA, Birk S, Lassen LH, et al. The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia. 2005;25(2):139–147. doi: 10.1111/j.1468-2982.2004.00830.x. [DOI] [PubMed] [Google Scholar]
  • 63.Gupta S, Akerman S, Maagdenberg AM, et al. Intravital microscopy on a closed cranial window in mice: a model to study trigeminovascular mechanisms involved in migraine. Cephalalgia. 2006;26(11):1294–1303. doi: 10.1111/j.1468-2982.2006.01219.x. [DOI] [PubMed] [Google Scholar]
  • 64.Edvinsson L. Blockade of CGRP receptors in the intracranial vasculature: a new target in the treatment of headache. Cephalalgia. 2004;24(8):611–622. doi: 10.1111/j.1468-2982.2003.00719.x. [DOI] [PubMed] [Google Scholar]
  • 65.Petersen KA, Lassen LH, Birk S, et al. BIBN4096BS antagonizes human alpha-calcitonin gene related peptide-induced headache and extracerebral artery dilatation. Clin Pharmacol Ther. 2005;77(3):202–213. doi: 10.1016/j.clpt.2004.10.001. [DOI] [PubMed] [Google Scholar]
  • 66.Edvinsson L, Nilsson E, Jansen-Olesen I. Inhibitory effect of BIBN4096BS, CGRP(8–37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol. 2007;150(5):633–640. doi: 10.1038/sj.bjp.0707134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Paone DV, Shaw AW, Nguyen DN, et al. Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-[(3R,6S)-6-(2,3-Difluorophenyl)-2-oxo-1- (2,2,2-trifluoroethyl)azepan-3-yl]-4- (2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (MK-0974) J Med Chem. 2007;50(23):5564–5567. doi: 10.1021/jm070668p. [DOI] [PubMed] [Google Scholar]
  • 68.Hershey JC, Corcoran HA, Baskin EP, et al. Investigation of the species selectivity of a nonpeptide CGRP receptor antagonist using a novel pharmacodynamic assay. Regul Pept. 2005;127(1–3):71–77. doi: 10.1016/j.regpep.2004.10.010. [DOI] [PubMed] [Google Scholar]
  • 69.Ho TW, Mannix LK, Fan X et al (2007) Randomized controlled trial of an oral CGRP antagonist, MK-0974, in acute treatment of migraine. Neurology (Epub ahead of print) [DOI] [PubMed]

Articles from The Journal of Headache and Pain are provided here courtesy of BMC

RESOURCES