Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1988 May;57(5):481–488. doi: 10.1038/bjc.1988.111

Depression of early phase of HTLV-I infection in vitro mediated by human beta-interferon.

C D'Onofrio 1, C F Perno 1, P Mazzetti 1, G Graziani 1, R Calio' 1, E Bonmassar 1
PMCID: PMC2246394  PMID: 2899440

Abstract

Natural human interferon beta (beta-IFN) was tested during the early phase of in vitro infection with HTLV-I virus of human cord blood mononuclear cells (CBL), to evaluate whether its antiviral and immunomodulating effects might prevent spreading of infection in the host. beta-IFN was found to reduce HTLV-I transmission and integration in CBL cultures. Moreover, beta-IFN had no effect in preventing virus transmission and integration in K562 and a very limited effect in HL60 and Molt-4 human tumour lines, suggesting a cell-type specific mode of action. beta-IFN induced a 'priming' response on CBL, since overnight pretreatment of recipient cells or one single treatment at the onset of the coculture were almost equally effective in protecting against HTLV-I infection. During the early days post infection (p.i.), IFN-treated CBL showed a pattern of phenotypic markers that was closer to that of non-infected CBL. In contrast, untreated CBL exposed to HTLV-I showed a percent increase of Tac+, M3+ and Leu 11+ subpopulations. Cell-mediated immune responses of CBL were depressed after coculturing with HTLV-I producer MT-2 cells. beta-IFN was able to boost the cell-mediated cytotoxicity of fresh and infected CBL against both K562 and MT-2 target cells. Leukocyte blastogenesis in mixed lymphocyte/tumour cell cultures, evaluated in terms of 3H-thymidine incorporation during the first week p.i., was also enhanced by IFN when macrophages and lymphocytes were reconstituted at an optimal 1:20 ratio. It is conceivable that this overall enhancement of the immune response induced by beta-IFN could contribute to reduce HTLV-I infection in vitro.

Full text

PDF
481

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akagi T., Ohtsuki Y., Takahashi K., Takeda I., Oka T., Miyoshi I. Immortalization of human lymphocytes by co-cultivation with lethally irradiated autologous T-cell lines harbouring human T-cell leukaemia virus-I. J Cancer Res Clin Oncol. 1985;110(1):82–84. doi: 10.1007/BF00402508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aoki T., Hamada C., Ohno S., Miyakoshi H., Koide H., Robert-Guroff M., Ting R. C., Gallo R. C. Location of human T-cell leukemia virus (HTLV) p19 antigen on virus-producing cells. Int J Cancer. 1984 Feb 15;33(2):161–165. doi: 10.1002/ijc.2910330202. [DOI] [PubMed] [Google Scholar]
  3. Clapham P., Nagy K., Cheingsong-Popov R., Exley M., Weiss R. A. Productive infection and cell-free transmission of human T-cell leukemia virus in a nonlymphoid cell line. Science. 1983 Dec 9;222(4628):1125–1127. doi: 10.1126/science.6316502. [DOI] [PubMed] [Google Scholar]
  4. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  5. De Vecchis L., Graziani G., Macchi B., Grandori C., Pastore S., Popovic M., Gallo R. C., Bonmassar E. Decline of natural cytotoxicity of human lymphocytes following infection with human T-cell leukemia/lymphoma virus (HTLV). Leuk Res. 1985;9(3):349–355. doi: 10.1016/0145-2126(85)90056-6. [DOI] [PubMed] [Google Scholar]
  6. Gallo R. C. The human T-cell leukemia/lymphotropic retroviruses (HTLV) family: past, present, and future. Cancer Res. 1985 Sep;45(9 Suppl):4524s–4533s. [PubMed] [Google Scholar]
  7. Graziani G., Pasqualetti D., Lopez M., D'Onofrio C., Testi A. M., Mandelli F., Gallo R. C., Bonmassar E. Increased susceptibility of peripheral mononuclear cells of leukemic patients to HTLV-I infection in vitro. Blood. 1987 Apr;69(4):1175–1181. [PubMed] [Google Scholar]
  8. Haseltine W. A., Sodroski J., Rosen C. The lor gene and pathogenesis of HTLV-I, -II, and -III. Cancer Res. 1985 Sep;45(9 Suppl):4545s–4549s. [PubMed] [Google Scholar]
  9. Hattori T., Uchiyama T., Toibana T., Takatsuki K., Uchino H. Surface phenotype of Japanese adult T-cell leukemia cells characterized by monoclonal antibodies. Blood. 1981 Sep;58(3):645–647. [PubMed] [Google Scholar]
  10. Herberman R. B., Aoki T., Nunn M., Lavrin D. H., Soares N., Gazdar A., Holden H., Chang K. S. Specificity of 51Cr-release cytotoxicity of lymphocytes immune to murine sarcoma virus. J Natl Cancer Inst. 1974 Oct;53(4):1103–1111. doi: 10.1093/jnci/53.4.1103. [DOI] [PubMed] [Google Scholar]
  11. Ho D. D., Rota T. R., Hirsch M. S. Infection of human endothelial cells by human T-lymphotropic virus type I. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7588–7590. doi: 10.1073/pnas.81.23.7588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holt P. G., Warner L. A., Mayrhofer G. Macrophages as effectors of T suppression: T-lymphocyte-dependent macrophage-mediated suppression of mitogen-induced blastogenesis in the rat. Cell Immunol. 1981 Sep 1;63(1):57–70. doi: 10.1016/0008-8749(81)90028-9. [DOI] [PubMed] [Google Scholar]
  13. Hoxie J. A., Matthews D. M., Cines D. B. Infection of human endothelial cells by human T-cell leukemia virus type I. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7591–7595. doi: 10.1073/pnas.81.23.7591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huleihel M., Aboud M. Inhibition of retrovirus DNA supercoiling in interferon-treated cells. J Virol. 1983 Oct;48(1):120–126. doi: 10.1128/jvi.48.1.120-126.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282. doi: 10.1146/annurev.bi.51.070182.001343. [DOI] [PubMed] [Google Scholar]
  17. Longo D. L., Gelmann E. P., Cossman J., Young R. A., Gallo R. C., O'Brien S. J., Matis L. A. Isolation of HTLV-transformed B-lymphocyte clone from a patient with HTLV-associated adult T-cell leukaemia. Nature. 1984 Aug 9;310(5977):505–506. doi: 10.1038/310505a0. [DOI] [PubMed] [Google Scholar]
  18. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  19. Markham P. D., Salahuddin S. Z., Macchi B., Robert-Guroff M., Gallo R. C. Transformation of different phenotypic types of human bone marrow T-lymphocytes by HTLV-1. Int J Cancer. 1984 Jan 15;33(1):13–17. doi: 10.1002/ijc.2910330104. [DOI] [PubMed] [Google Scholar]
  20. Merl S., Kloster B., Moore J., Hubbell C., Tomar R., Davey F., Kalinowski D., Planas A., Ehrlich G., Clark D. Efficient transformation of previously activated and dividing T lymphocytes by human T cell leukemia-lymphoma virus. Blood. 1984 Nov;64(5):967–974. [PubMed] [Google Scholar]
  21. Minks M. A., Benvin S., Maroney P. A., Baglioni C. Synthesis of 2'5'-oligo(A) in extracts of interferon-treated HeLa cells. J Biol Chem. 1979 Jun 25;254(12):5058–5064. [PubMed] [Google Scholar]
  22. Minowada J., Onuma T., Moore G. E. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst. 1972 Sep;49(3):891–895. [PubMed] [Google Scholar]
  23. Miyoshi I., Kubonishi I., Yoshimoto S., Akagi T., Ohtsuki Y., Shiraishi Y., Nagata K., Hinuma Y. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981 Dec 24;294(5843):770–771. doi: 10.1038/294770a0. [DOI] [PubMed] [Google Scholar]
  24. Morgan D. A., Ruscetti F. W., Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976 Sep 10;193(4257):1007–1008. doi: 10.1126/science.181845. [DOI] [PubMed] [Google Scholar]
  25. Nair M. P., Schwartz S. A., Menon M. Association of decreased natural and antibody-dependent cellular cytotoxicity and production of natural killer cytotoxic factor and interferon in neonates. Cell Immunol. 1985 Aug;94(1):159–171. doi: 10.1016/0008-8749(85)90093-0. [DOI] [PubMed] [Google Scholar]
  26. Perucho M., Esteban M. Inhibitory effect of interferon on the genetic and oncogenic transformation by viral and cellular genes. J Virol. 1985 Apr;54(1):229–232. doi: 10.1128/jvi.54.1.229-232.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Popovic M., Flomenberg N., Volkman D. J., Mann D., Fauci A. S., Dupont B., Gallo R. C. Alteration of T-cell functions by infection with HTLV-I or HTLV-II. Science. 1984 Oct 26;226(4673):459–462. doi: 10.1126/science.6093248. [DOI] [PubMed] [Google Scholar]
  28. Popovic M., Lange-Wantzin G., Sarin P. S., Mann D., Gallo R. C. Transformation of human umbilical cord blood T cells by human T-cell leukemia/lymphoma virus. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5402–5406. doi: 10.1073/pnas.80.17.5402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Popovic M., Sarin P. S., Robert-Gurroff M., Kalyanaraman V. S., Mann D., Minowada J., Gallo R. C. Isolation and transmission of human retrovirus (human t-cell leukemia virus). Science. 1983 Feb 18;219(4586):856–859. doi: 10.1126/science.6600519. [DOI] [PubMed] [Google Scholar]
  30. Robert-Guroff M., Ruscetti F. W., Posner L. E., Poiesz B. J., Gallo R. C. Detection of the human T cell lymphoma virus p19 in cells of some patients with cutaneous T cell lymphoma and leukemia using a monoclonal antibody. J Exp Med. 1981 Dec 1;154(6):1957–1964. doi: 10.1084/jem.154.6.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ruscetti F. W., Mikovits J. A., Kalyanaraman V. S., Overton R., Stevenson H., Stromberg K., Herberman R. B., Farrar W. L., Ortaldo J. R. Analysis of effector mechanisms against HTLV-I- and HTLV-III/LAV-infected lymphoid cells. J Immunol. 1986 May 15;136(10):3619–3624. [PubMed] [Google Scholar]
  32. Sinangil F., Harada S., Purtilo D. T., Volsky D. J. Host cell range of adult T-cell leukemia virus. I. Viral infectivity and binding to various cells as detected by flow cytometry. Int J Cancer. 1985 Aug 15;36(2):191–198. doi: 10.1002/ijc.2910360211. [DOI] [PubMed] [Google Scholar]
  33. Takatsuki K., Yamaguchi K., Kawano F., Hattori T., Nishimura H., Tsuda H., Sanada I., Nakada K., Itai Y. Clinical diversity in adult T-cell leukemia-lymphoma. Cancer Res. 1985 Sep;45(9 Suppl):4644s–4645s. [PubMed] [Google Scholar]
  34. Thorn R. M., Henney C. S. Kinetic analysis of target cell destruction by effector T cells. I. Delineation of parameters related to the frequency and lytic efficiency of killer cells. J Immunol. 1976 Dec;117(6):2213–2219. [PubMed] [Google Scholar]
  35. Tomita S., Ambrus J. L., Jr, Volkman D. J., Longo D. L., Mitsuya H., Reitz M. S., Jr, Fauci A. S. Human T cell leukemia/lymphoma virus I infection and subsequent cloning of normal human B cells. Direct responsiveness of cloned cells to recombinant interleukin 2 by differentiation in the absence of enhanced proliferation. J Exp Med. 1985 Jul 1;162(1):393–398. doi: 10.1084/jem.162.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Veit B. C. Immunoregulatory activity of culture-induced suppressor macrophages. Cell Immunol. 1982 Sep 1;72(1):14–27. doi: 10.1016/0008-8749(82)90279-9. [DOI] [PubMed] [Google Scholar]
  37. Vitiello A., Maccario R., Montagna D., Porta F. A., Alberini C. M., Mingrat G., Astaldi-Ricotti G. C., Nespoli L., Ugazio A. G. Lymphocyte subpopulations in the neonate: a subset of HNK-1-, OKT3-, OKT8+ lymphocytes displays natural killer activity. Cell Immunol. 1984 Apr 15;85(1):252–257. doi: 10.1016/0008-8749(84)90295-8. [DOI] [PubMed] [Google Scholar]
  38. Volkman D. J., Popovic M., Gallo R. C., Fauci A. S. Human T cell leukemia/lymphoma virus-infected antigen-specific T cell clones: indiscriminant helper function and lymphokine production. J Immunol. 1985 Jun;134(6):4237–4243. [PubMed] [Google Scholar]
  39. Weiss R. Tissue-specific transformation by human T-cell leukaemia virus. 1984 Jul 26-Aug 1Nature. 310(5975):273–274. doi: 10.1038/310273a0. [DOI] [PubMed] [Google Scholar]
  40. Yarchoan R., Guo H. G., Reitz M., Jr, Maluish A., Mitsuya H., Broder S. Alterations in cytotoxic and helper T cell function after infection of T cell clones with human T cell leukemia virus, type I. J Clin Invest. 1986 May;77(5):1466–1473. doi: 10.1172/JCI112459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yoshida M., Miyoshi I., Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2031–2035. doi: 10.1073/pnas.79.6.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Furth R. Current view on the mononuclear phagocyte system. Immunobiology. 1982 Apr;161(3-4):178–185. doi: 10.1016/S0171-2985(82)80072-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES