Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1988 Apr;57(4):395–402. doi: 10.1038/bjc.1988.89

Carcinogenicity and haemoglobin synthesis induction by cytidine analogues.

B I Carr 1, S Rahbar 1, Y Asmeron 1, A Riggs 1, C D Winberg 1
PMCID: PMC2246563  PMID: 2455532

Abstract

We investigated 5-azacytidine and five of its analogues for: (1) carcinogenicity, in the male Fischer rat; (2) toxicities using changes in rat weights in vivo and a cytotoxicity assay in vitro; and (3) haemoglobin gene expression, using minor haemoglobin synthesis in sheep, mice and rats. 5-Azacytidine was found to be a complete carcinogen. It increased the incidence of testicular tumours as well as non-testicular tumours in rats treated for 12 months. 5-Azacytidine also had hepatic tumour promoting properties and was able to induce transplacental carcinogenesis when administered to pregnant rats on day 21 of timed pregnancies. None of the other 5 analogues that were tested appeared to be carcinogenic in small experiments. All the analogues which are known to have hypomethylating activity were found to be cytotoxic in vitro; the most potent being 5-azacytidine. As judged by decreased rat weight compared to untreated controls, the fluorinated cytidine analogues and 5'-deoxyazacytidine were more toxic than 5-azacytidine. Altered haemoglobin synthesis was seen in rats and DBA/2J mice, but not in sheep. In mice, where the clearest haemoglobin changes were noted, an increase in minor haemoglobin synthesis was found using both high and low doses of 5-azacytidine, and with 5,6-dihydro-5-azacytidine and 5-aza-2'-deoxycytidine. These last two analogues appear to be relatively non-toxic, noncarcinogenic in these experiments, and retain haemoglobin activating properties with a potency similar to that of 5-azacytidine.

Full text

PDF
395

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter B. P., Campbell A. S., Holland J. G., Friend C. Increased mouse minor hemoglobin during erythroid stress: a model for hemoglobin regulation. Exp Hematol. 1982 Oct;10(9):754–760. [PubMed] [Google Scholar]
  2. Benedict W. F., Banerjee A., Gardner A., Jones P. A. Induction of morphological transformation in mouse C3H/10T1/2 clone 8 cells and chromosomal damage in hamster A(T1)C1-3 cells by cancer chemotherapeutic agents. Cancer Res. 1977 Jul;37(7 Pt 1):2202–2208. [PubMed] [Google Scholar]
  3. Boehm T. L., Drahovsky D. Effect of carcinogen ethionine on enzymatic methylation of DNA sequences with various degrees of repetitiveness. Eur J Cancer. 1979 Sep;15(9):1167–1173. doi: 10.1016/0014-2964(79)90133-6. [DOI] [PubMed] [Google Scholar]
  4. Boehm T. L., Drahovsky D. Hypomethylation of DNA in Raji cells after treatment with N-methyl-N-nitrosourea. Carcinogenesis. 1981;2(1):39–42. doi: 10.1093/carcin/2.1.39. [DOI] [PubMed] [Google Scholar]
  5. Bouck N., Kokkinakis D., Ostrowsky J. Induction of a step in carcinogenesis that is normally associated with mutagenesis by nonmutagenic concentrations of 5-azacytidine. Mol Cell Biol. 1984 Jul;4(7):1231–1237. doi: 10.1128/mcb.4.7.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carr B. I., Laishes B. A. Carcinogen-induced drug resistance in rat hepatocytes. Cancer Res. 1981 May;41(5):1715–1719. [PubMed] [Google Scholar]
  7. Carr B. I., Rahbar S., Doroshow J. H., Blayney D., Goldberg D., Leong L., Asmeron Y. Fetal hemoglobin gene activation in a phase II study of 5,6-dihydro-5-azacytidine for bronchogenic carcinoma. Cancer Res. 1987 Aug 1;47(15):4199–4201. [PubMed] [Google Scholar]
  8. Carr B. I., Reilly J. G., Smith S. S., Winberg C., Riggs A. The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis. 1984 Dec;5(12):1583–1590. doi: 10.1093/carcin/5.12.1583. [DOI] [PubMed] [Google Scholar]
  9. Chabner B. A., Drake J. C., Johns D. G. Deamination of 5-azacytidine by a human leukemia cell cytidine deaminase. Biochem Pharmacol. 1973 Nov 1;22(21):2763–2765. doi: 10.1016/0006-2952(73)90137-8. [DOI] [PubMed] [Google Scholar]
  10. Charache S., Dover G., Smith K., Talbot C. C., Jr, Moyer M., Boyer S. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4842–4846. doi: 10.1073/pnas.80.15.4842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cheah M. S., Wallace C. D., Hoffman R. M. Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer Inst. 1984 Nov;73(5):1057–1065. [PubMed] [Google Scholar]
  12. Cihák A. Biological effects of 5-azacytidine in eukaryotes. Oncology. 1974;30(5):405–422. doi: 10.1159/000224981. [DOI] [PubMed] [Google Scholar]
  13. Constantinides P. G., Jones P. A., Gevers W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature. 1977 May 26;267(5609):364–366. doi: 10.1038/267364a0. [DOI] [PubMed] [Google Scholar]
  14. Constantinides P. G., Taylor S. M., Jones P. A. Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol. 1978 Sep;66(1):57–71. doi: 10.1016/0012-1606(78)90273-7. [DOI] [PubMed] [Google Scholar]
  15. Creusot F., Acs G., Christman J. K. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine. J Biol Chem. 1982 Feb 25;257(4):2041–2048. [PubMed] [Google Scholar]
  16. Darmon M., Nicolas J. F., Lamblin D. 5-Azacytidine is able to induce the conversion of teratocarcinoma-derived mesenchymal cells into epithelia cells. EMBO J. 1984 May;3(5):961–967. doi: 10.1002/j.1460-2075.1984.tb01914.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Denda A., Rao P. M., Rajalakshmi S., Sarma D. S. 5-azacytidine potentiates initiation induced by carcinogens in rat liver. Carcinogenesis. 1985 Jan;6(1):145–146. doi: 10.1093/carcin/6.1.145. [DOI] [PubMed] [Google Scholar]
  18. Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93–124. doi: 10.1146/annurev.bi.52.070183.000521. [DOI] [PubMed] [Google Scholar]
  19. Feinberg A. P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983 Jan 6;301(5895):89–92. doi: 10.1038/301089a0. [DOI] [PubMed] [Google Scholar]
  20. Feinberg A. P., Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun. 1983 Feb 28;111(1):47–54. doi: 10.1016/s0006-291x(83)80115-6. [DOI] [PubMed] [Google Scholar]
  21. Frost P., Liteplo R. G., Donaghue T. P., Kerbel R. S. Selection of strongly immunogenic "tum-" variants from tumors at high frequency using 5-azacytidine. J Exp Med. 1984 May 1;159(5):1491–1501. doi: 10.1084/jem.159.5.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gama-Sosa M. A., Slagel V. A., Trewyn R. W., Oxenhandler R., Kuo K. C., Gehrke C. W., Ehrlich M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983 Oct 11;11(19):6883–6894. doi: 10.1093/nar/11.19.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Garrick L. M., Sharma V. S., McDonald M. J., Ranney H. M. Rat haemoglobin heterogeneity. Two structurally distinct alpha chains and functional behaviour of selected components. Biochem J. 1975 Jul;149(1):245–258. doi: 10.1042/bj1490245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goelz S. E., Vogelstein B., Hamilton S. R., Feinberg A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985 Apr 12;228(4696):187–190. doi: 10.1126/science.2579435. [DOI] [PubMed] [Google Scholar]
  25. Goodman D. G., Ward J. M., Squire R. A., Chu K. C., Linhart M. S. Neoplastic and nonneoplastic lesions in aging F344 rats. Toxicol Appl Pharmacol. 1979 Apr;48(2):237–248. doi: 10.1016/0041-008x(79)90029-2. [DOI] [PubMed] [Google Scholar]
  26. Harrison J. J., Anisowicz A., Gadi I. K., Raffeld M., Sager R. Azacytidine-induced tumorigenesis of CHEF/18 cells: correlated DNA methylation and chromosome changes. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6606–6610. doi: 10.1073/pnas.80.21.6606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Holliday R. A new theory of carcinogenesis. Br J Cancer. 1979 Oct;40(4):513–522. doi: 10.1038/bjc.1979.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hrodek O., Veselý J. 5-azacytidine in childhood leukemia. Neoplasma. 1971;18(5):493–503. [PubMed] [Google Scholar]
  29. Jaenisch R., Schnieke A., Harbers K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1451–1455. doi: 10.1073/pnas.82.5.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jones P. A. DNA methylation and cancer. Cancer Res. 1986 Feb;46(2):461–466. [PubMed] [Google Scholar]
  31. Jones P. A., Taylor S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980 May;20(1):85–93. doi: 10.1016/0092-8674(80)90237-8. [DOI] [PubMed] [Google Scholar]
  32. Landolph J. R., Jones P. A. Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T 1/2 clone 8 and V79 cells. Cancer Res. 1982 Mar;42(3):817–823. [PubMed] [Google Scholar]
  33. Lapeyre J. N., Walker M. S., Becker F. F. DNA methylation and methylase levels in normal and malignant mouse hepatic tissues. Carcinogenesis. 1981;2(9):873–878. doi: 10.1093/carcin/2.9.873. [DOI] [PubMed] [Google Scholar]
  34. Ley T. J., DeSimone J., Anagnou N. P., Keller G. H., Humphries R. K., Turner P. H., Young N. S., Keller P., Nienhuis A. W. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med. 1982 Dec 9;307(24):1469–1475. doi: 10.1056/NEJM198212093072401. [DOI] [PubMed] [Google Scholar]
  35. Marquardt H., Marquardt H. Induction of malignant transformation and mutagenesis in cell cultures by cancer chemotherapeutic agents. Cancer. 1977 Oct;40(4 Suppl):1930–1934. doi: 10.1002/1097-0142(197710)40:4+<1930::aid-cncr2820400826>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  36. Momparler R. L., Samson J., Momparler L. F., Rivard G. E. Cell cycle effects and cellular pharmacology of 5-aza-2'-deoxycytidine. Cancer Chemother Pharmacol. 1984;13(3):191–194. doi: 10.1007/BF00269027. [DOI] [PubMed] [Google Scholar]
  37. Neil G. L., Moxley T. E., Manak R. C. Enhancement by tetrahydrouridine of 1-beta-D-arabinofuranosylcytosine (cytarabine) oral activity in L1210 leukemic mice. Cancer Res. 1970 Aug;30(8):2166–2172. [PubMed] [Google Scholar]
  38. Nyce J., Weinhouse S., Magee P. N. 5-Methylcytosine depletion during tumour development: an extension of the miscoding concept. Br J Cancer. 1983 Oct;48(4):463–475. doi: 10.1038/bjc.1983.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Olsson L., Forchhammer J. Induction of the metastatic phenotype in a mouse tumor model by 5-azacytidine, and characterization of an antigen associated with metastatic activity. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3389–3393. doi: 10.1073/pnas.81.11.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ormerod E. J., Everett C. A., Hart I. R. Enhanced experimental metastatic capacity of a human tumor line following treatment with 5-azacytidine. Cancer Res. 1986 Feb;46(2):884–890. [PubMed] [Google Scholar]
  41. Pinto A., Attadia V., Fusco A., Ferrara F., Spada O. A., Di Fiore P. P. 5-Aza-2'-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood. 1984 Oct;64(4):922–929. [PubMed] [Google Scholar]
  42. Pitot H. C., Barsness L., Goldsworthy T., Kitagawa T. Biochemical characterisation of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine. Nature. 1978 Feb 2;271(5644):456–458. doi: 10.1038/271456a0. [DOI] [PubMed] [Google Scholar]
  43. Razin A., Riggs A. D. DNA methylation and gene function. Science. 1980 Nov 7;210(4470):604–610. doi: 10.1126/science.6254144. [DOI] [PubMed] [Google Scholar]
  44. Reichman M., Penman S. The mechanism of inhibition of protein synthesis by 5-azacytidine in HeLa cells. Biochim Biophys Acta. 1973 Oct 12;324(2):282–289. doi: 10.1016/0005-2787(73)90145-7. [DOI] [PubMed] [Google Scholar]
  45. Riggs A. D., Jones P. A. 5-methylcytosine, gene regulation, and cancer. Adv Cancer Res. 1983;40:1–30. doi: 10.1016/s0065-230x(08)60678-8. [DOI] [PubMed] [Google Scholar]
  46. Salas C. E., Pfohl-Leszkowicz A., Lang M. C., Dirheimer G. Effect of modification by N-acetoxy-N-2-acetylaminofluorene on the level of DNA methylation. Nature. 1979 Mar 1;278(5699):71–72. doi: 10.1038/278071a0. [DOI] [PubMed] [Google Scholar]
  47. Schmahl W., Geber E., Lehmacher W. Diaplacental carcinogenic effects of 5-azacytidine in NMRI-mice. Cancer Lett. 1985 May;27(1):81–90. doi: 10.1016/0304-3835(85)90011-4. [DOI] [PubMed] [Google Scholar]
  48. Stoner G. D., Shimkin M. B., Kniazeff A. J., Weisburger J. H., Weisburger E. K., Gori G. B. Test for carcinogenicity of food additives and chemotherapeutic agents by the pulmonary tumor response in strain A mice. Cancer Res. 1973 Dec;33(12):3069–3085. [PubMed] [Google Scholar]
  49. Trainer D. L., Kline T., Mallon F., Greig R., Poste G. Effect of 5-azacytidine on DNA methylation and the malignant properties of B16 melanoma cells. Cancer Res. 1985 Dec;45(12 Pt 1):6124–6130. [PubMed] [Google Scholar]
  50. Venolia L., Gartler S. M., Wassman E. R., Yen P., Mohandas T., Shapiro L. J. Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2352–2354. doi: 10.1073/pnas.79.7.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Veselý J., Cihák A. High-frequency induction in vivo of mouse leukemia in AKR strain by 5-azacytidine and 5-iodo-2'-deoxyuridine. Experientia. 1973 Sep 15;29(9):1132–1133. doi: 10.1007/BF01946763. [DOI] [PubMed] [Google Scholar]
  52. Von Hoff D. D., Slavik M., Muggia F. M. 5-Azacytidine. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann Intern Med. 1976 Aug;85(2):237–245. doi: 10.7326/0003-4819-85-2-237. [DOI] [PubMed] [Google Scholar]
  53. Walker C., Ranney D. F., Shay J. W. 5-Azacytidine-induced uncoupling of differentiation and tumorigenicity in a murine cell line. J Natl Cancer Inst. 1984 Oct;73(4):877–885. [PubMed] [Google Scholar]
  54. Weintraub H., Larsen A., Groudine M. Alpha-Globin-gene switching during the development of chicken embryos: expression and chromosome structure. Cell. 1981 May;24(2):333–344. doi: 10.1016/0092-8674(81)90323-8. [DOI] [PubMed] [Google Scholar]
  55. Wilson V. L., Jones P. A. Inhibition of DNA methylation by chemical carcinogens in vitro. Cell. 1983 Jan;32(1):239–246. doi: 10.1016/0092-8674(83)90514-7. [DOI] [PubMed] [Google Scholar]
  56. Young N. S., Benz E. J., Jr, Kantor J. A., Kretschmer P., Nienhuis A. W. Hemoglobin switching in sheep: only the gamma gene is in the active conformation in fetal liver but all the beta and gamma genes are in the active conformation in bone marrow. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5884–5888. doi: 10.1073/pnas.75.12.5884. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES