Abstract
Since the vascular endothelium is a primary site of damage after photodynamic therapy (PDT), it seemed likely that drugs which affect the vasculature may modify the outcome of PDT. Noradrenaline, propranolol, hydralazine and phenoxybenzamine inhibited photodynamic damage to tumours if these drugs were administered concurrently with HPD, 2 h before irradiation. This inhibition was associated with reduced uptake of HPD into tumours. There was no inhibition if irradiation was delayed until 24 h after administration of vasoactive drug, presumably because HPD uptake continued after the drugs had ceased to affect the vasculature. Verapamil enhanced photodynamic destruction of tumours when administered concurrently with HPD and the enhancement was associated with increased uptake of HPD into tumours. Verapamil neither increased uptake of HPD nor enhanced photodynamic destruction of cells in vitro. When verapamil was administered after irradiation, regrowth of tumours was inhibited. A similar effect was previously demonstrated with glucocorticoids. Other calcium channel blocking agents diltiazem and nifedipine had no effect on uptake of HPD or inhibition of regrowth of tumours after PDT. Inhibition of capillary or stromal ingrowth into tumours seems a plausible explanation of this effect of verapamil. This commonly used drug may be useful to enhance the efficacy of PDT.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benson R. C., Jr Treatment of diffuse transitional cell carcinoma in situ by whole bladder hematoporphyrin derivative photodynamic therapy. J Urol. 1985 Oct;134(4):675–678. doi: 10.1016/s0022-5347(17)47379-4. [DOI] [PubMed] [Google Scholar]
- Berenbaum M. C., Hall G. W., Hoyes A. D. Cerebral photosensitisation by haematoporphyrin derivative. Evidence for an endothelial site of action. Br J Cancer. 1986 Jan;53(1):81–89. doi: 10.1038/bjc.1986.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bugelski P. J., Porter C. W., Dougherty T. J. Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. Cancer Res. 1981 Nov;41(11 Pt 1):4606–4612. [PubMed] [Google Scholar]
- Candide C., Morlière P., Mazière J. C., Goldstein S., Santus R., Dubertret L., Reyftmann J. P., Polonovski J. In vitro interaction of the photoactive anticancer porphyrin derivative photofrin II with low density lipoprotein, and its delivery to cultured human fibroblasts. FEBS Lett. 1986 Oct 20;207(1):133–138. doi: 10.1016/0014-5793(86)80026-6. [DOI] [PubMed] [Google Scholar]
- Cowled P. A., Forbes I. J. Photocytotoxicity in vivo of haematoporphyrin derivative components. Cancer Lett. 1985 Aug;28(1):111–118. doi: 10.1016/0304-3835(85)90099-0. [DOI] [PubMed] [Google Scholar]
- Cowled P. A., Forbes I. J., Swincer A. G., Trenerry V. C., Ward A. D. Separation and phototoxicity in vitro of some of the components of haematoporphyrin derivative. Photochem Photobiol. 1985 Apr;41(4):445–451. doi: 10.1111/j.1751-1097.1985.tb03510.x. [DOI] [PubMed] [Google Scholar]
- Cowled P. A., Mackenzie L., Forbes I. J. Potentiation of photodynamic therapy with haematoporphyrin derivatives by glucocorticoids. Cancer Lett. 1985 Oct;29(1):107–114. doi: 10.1016/0304-3835(85)90130-2. [DOI] [PubMed] [Google Scholar]
- Crum R., Szabo S., Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science. 1985 Dec 20;230(4732):1375–1378. doi: 10.1126/science.2416056. [DOI] [PubMed] [Google Scholar]
- Das M., Dixit R., Mukhtar H., Bickers D. R. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats. Cancer Res. 1985 Feb;45(2):608–615. [PubMed] [Google Scholar]
- Folkman J., Langer R., Linhardt R. J., Haudenschild C., Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science. 1983 Aug 19;221(4612):719–725. doi: 10.1126/science.6192498. [DOI] [PubMed] [Google Scholar]
- Forbes I. J., Cowled P. A., Leong A. S., Ward A. D., Black R. B., Blake A. J., Jacka F. J. Phototherapy of human tumours using haematoporphyrin derivative. Med J Aust. 1980 Nov 1;2(9):489–493. doi: 10.5694/j.1326-5377.1980.tb100708.x. [DOI] [PubMed] [Google Scholar]
- Hayata Y., Kato H., Konaka C., Amemiya R., Ono J., Ogawa I., Kinoshita K., Sakai H., Takahashi H. Photoradiation therapy with hematoporphyrin derivative in early and stage 1 lung cancer. Chest. 1984 Aug;86(2):169–177. doi: 10.1378/chest.86.2.169. [DOI] [PubMed] [Google Scholar]
- Henderson B. W., Waldow S. M., Mang T. S., Potter W. R., Malone P. B., Dougherty T. J. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Res. 1985 Feb;45(2):572–576. [PubMed] [Google Scholar]
- Kaelin W. G., Jr, Shrivastav S., Shand D. G., Jirtle R. L. Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Res. 1982 Oct;42(10):3944–3949. [PubMed] [Google Scholar]
- Kruuv J. A., Inch W. R., McCredie J. A. Blood flow and oxygenation of tumors in mice. II. Effects of vasodilator drugs. Cancer. 1967 Jan;20(1):60–65. doi: 10.1002/1097-0142(1967)20:1<60::aid-cncr2820200109>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
- Lee See K., Forbes I. J., Betts W. H. Oxygen dependency of photocytotoxicity with haematoporphyrin derivative. Photochem Photobiol. 1984 May;39(5):631–634. doi: 10.1111/j.1751-1097.1984.tb03902.x. [DOI] [PubMed] [Google Scholar]
- Mattson J., Appelgren L., Karlsson L., Peterson H. I. Influence of vasoactive drugs and ischaemia on intra-tumour blood flow distribution. Eur J Cancer. 1978 Jul;14(7):761–764. doi: 10.1016/0014-2964(78)90006-3. [DOI] [PubMed] [Google Scholar]
- Mattsson J., Alpsten M., Appelgren L., Peterson H. I. Influence of noradrenaline on local tumour blood flow. Eur J Cancer. 1980 Jan;16(1):99–102. doi: 10.1016/0014-2964(80)90114-0. [DOI] [PubMed] [Google Scholar]
- Musser D. A., Datta-Gupta N. Inability to elicit rapid cytocidal effects on L1210 cells derived from porphyrin-injected mice following in vitro photoirradiation. J Natl Cancer Inst. 1984 Feb;72(2):427–434. [PubMed] [Google Scholar]
- Peterson H. I., Mattson J. Vasoactive drugs and tumor blood flow. Biorheology. 1984;21(4):503–508. doi: 10.3233/bir-1984-21409. [DOI] [PubMed] [Google Scholar]
- Robinson B. A., Clutterbuck R. D., Millar J. L., McElwain T. J. Verapamil potentiation of melphalan cytotoxicity and cellular uptake in murine fibrosarcoma and bone marrow. Br J Cancer. 1985 Dec;52(6):813–822. doi: 10.1038/bjc.1985.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selman S. H., Kreimer-Birnbaum M., Klaunig J. E., Goldblatt P. J., Keck R. W., Britton S. L. Blood flow in transplantable bladder tumors treated with hematoporphyrin derivative and light. Cancer Res. 1984 May;44(5):1924–1927. [PubMed] [Google Scholar]
- Selman S. H., Milligan A. J., Kreimer-Birnbaum M., Keck R. W., Goldblatt P. J., Britton S. L. Hematoporphyrin derivative photochemotherapy of experimental bladder tumors. J Urol. 1985 Feb;133(2):330–333. doi: 10.1016/s0022-5347(17)48933-6. [DOI] [PubMed] [Google Scholar]
- Star W. M., Marijnissen J. P., van den Berg-Blok A. E., Reinhold H. S. Destructive effect of photoradiation on the microcirculation of a rat mammary tumor growing in "sandwich" observation chambers. Prog Clin Biol Res. 1984;170:637–645. [PubMed] [Google Scholar]
- Stein O., Leitersdorf E., Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis. 1985 Jan-Feb;5(1):35–44. doi: 10.1161/01.atv.5.1.35. [DOI] [PubMed] [Google Scholar]
- Tsuruo T., Iida H., Naganuma K., Tsukagoshi S., Sakurai Y. Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. Cancer Res. 1983 Feb;43(2):808–813. [PubMed] [Google Scholar]
- Tsuruo T., Iida H., Nojiri M., Tsukagoshi S., Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983 Jun;43(6):2905–2910. [PubMed] [Google Scholar]
- Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 1982 Nov;42(11):4730–4733. [PubMed] [Google Scholar]
- Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Potentiation of vincristine and Adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res. 1983 May;43(5):2267–2272. [PubMed] [Google Scholar]
- Wickersham J. K., Barrett W. P., Furukawa S. B., Puffer H. W., Warner N. E. An evaluation of the response of the microvasculature in tumors in C3H mice to vasoactive drugs. Bibl Anat. 1977;(15 Pt 1):291–293. [PubMed] [Google Scholar]
