Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1989 Mar;59(3):341–346. doi: 10.1038/bjc.1989.67

Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

R S Marshall 1, M C Paterson 1, A M Rauth 1
PMCID: PMC2247063  PMID: 2467684

Abstract

Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells.

Full text

PDF
341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson A. M., Hunkeler M. J., Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5216–5220. doi: 10.1073/pnas.77.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CONOVER T. E., ERNSTER L. DT diaphorase. II. Relation to respiratory chain of intact mitochondira. Biochim Biophys Acta. 1962 Apr 9;58:189–200. doi: 10.1016/0006-3002(62)90998-8. [DOI] [PubMed] [Google Scholar]
  3. Chakrabarty S., Danels Y. J., Long B. H., Willson J. K., Brattain M. G. Circumvention of deficient activation in mitomycin C-resistant human colonic carcinoma cells by the mitomycin C analogue BMY25282. Cancer Res. 1986 Jul;46(7):3456–3458. [PubMed] [Google Scholar]
  4. Dorr R. T., Liddil J. D., Trent J. M., Dalton W. S. Mitomycin C resistant L1210 leukemia cells: association with pleiotropic drug resistance. Biochem Pharmacol. 1987 Oct 1;36(19):3115–3120. doi: 10.1016/0006-2952(87)90620-4. [DOI] [PubMed] [Google Scholar]
  5. ERNSTER L., DANIELSON L., LJUNGGREN M. DT diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochim Biophys Acta. 1962 Apr 9;58:171–188. doi: 10.1016/0006-3002(62)90997-6. [DOI] [PubMed] [Google Scholar]
  6. Fracasso P. M., Sartorelli A. C. Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells. Cancer Res. 1986 Aug;46(8):3939–3944. [PubMed] [Google Scholar]
  7. Geard C. R., Georgsson M. A. Glutathione levels and cytotoxicity of a thiol activated alkylating agent in human and mouse cells. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1179–1182. doi: 10.1016/0360-3016(86)90253-1. [DOI] [PubMed] [Google Scholar]
  8. Gupta V., Costanzi J. J. Role of hypoxia in anticancer drug-induced cytotoxicity for Ehrlich ascites cells. Cancer Res. 1987 May 1;47(9):2407–2412. [PubMed] [Google Scholar]
  9. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iyanagi T., Yamazaki I. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Biochim Biophys Acta. 1970 Sep 1;216(2):282–294. doi: 10.1016/0005-2728(70)90220-3. [DOI] [PubMed] [Google Scholar]
  11. Kartner N., Riordan J. R., Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science. 1983 Sep 23;221(4617):1285–1288. doi: 10.1126/science.6137059. [DOI] [PubMed] [Google Scholar]
  12. Kennedy K. A., Rockwell S., Sartorelli A. C. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res. 1980 Jul;40(7):2356–2360. [PubMed] [Google Scholar]
  13. Kennedy K. A., Sligar S. G., Polomski L., Sartorelli A. C. Metabolic activation of mitomycin C by liver microsomes and nuclei. Biochem Pharmacol. 1982 Jun 1;31(11):2011–2016. doi: 10.1016/0006-2952(82)90414-2. [DOI] [PubMed] [Google Scholar]
  14. Keyes S. R., Rockwell S., Sartorelli A. C. Correlation between drug uptake and selective toxicity of porfiromycin to hypoxic EMT6 cells. Cancer Res. 1987 Nov 1;47(21):5654–5657. [PubMed] [Google Scholar]
  15. Keyes S. R., Rockwell S., Sartorelli A. C. Enhancement of mitomycin C cytotoxicity to hypoxic tumor cells by dicoumarol in vivo and in vitro. Cancer Res. 1985 Jan;45(1):213–216. [PubMed] [Google Scholar]
  16. Keyes S. R., Rockwell S., Sartorelli A. C. Porfiromycin as a bioreductive alkylating agent with selective toxicity to hypoxic EMT6 tumor cells in vivo and in vitro. Cancer Res. 1985 Aug;45(8):3642–3645. [PubMed] [Google Scholar]
  17. Long B. H., Willson J. K., Brattain D. E., Musial S., Brattain M. G. Effects of mitomycin on human colon carcinoma cells. J Natl Cancer Inst. 1984 Oct;73(4):787–792. [PubMed] [Google Scholar]
  18. Ludwig C. Drug resistance of hypoxic tumour cells in vitro. Cancer Treat Rev. 1984 Mar;11 (Suppl A):173–178. doi: 10.1016/0305-7372(84)90057-4. [DOI] [PubMed] [Google Scholar]
  19. Marshall R. S., Koch C. J., Rauth A. M. Measurement of low levels of oxygen and their effect on respiration in cell suspensions maintained in an open system. Radiat Res. 1986 Oct;108(1):91–101. [PubMed] [Google Scholar]
  20. Marshall R. S., Rauth A. M. Modification of the cytotoxic activity of mitomycin C by oxygen and ascorbic acid in Chinese hamster ovary cells and a repair-deficient mutant. Cancer Res. 1986 Jun;46(6):2709–2713. [PubMed] [Google Scholar]
  21. Meyn R. E., Jenkins S. F., Thompson L. H. Defective removal of DNA cross-links in a repair-deficient mutant of Chinese hamster cells. Cancer Res. 1982 Aug;42(8):3106–3110. [PubMed] [Google Scholar]
  22. Pan S. S., Andrews P. A., Glover C. J., Bachur N. R. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J Biol Chem. 1984 Jan 25;259(2):959–966. [PubMed] [Google Scholar]
  23. Pinto A. L., Lippard S. J. Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta. 1985;780(3):167–180. doi: 10.1016/0304-419x(85)90001-0. [DOI] [PubMed] [Google Scholar]
  24. Plooy A. C., van Dijk M., Berends F., Lohman P. H. Formation and repair of DNA interstrand cross-links in relation to cytotoxicity and unscheduled DNA synthesis induced in control and mutant human cells treated with cis-diamminedichloroplatinum(II). Cancer Res. 1985 Sep;45(9):4178–4184. [PubMed] [Google Scholar]
  25. Rahmouni A., Leng M. Reaction of nucleic acids with cis-diamminedichloroplatinum(II): interstrand cross-links. Biochemistry. 1987 Nov 17;26(23):7229–7234. doi: 10.1021/bi00397a005. [DOI] [PubMed] [Google Scholar]
  26. Rockwell S. Effect of some proliferative and environmental factors on the toxicity of mitomycin C to tumor cells in vitro. Int J Cancer. 1986 Aug 15;38(2):229–235. doi: 10.1002/ijc.2910380213. [DOI] [PubMed] [Google Scholar]
  27. Rockwell S. Effects of mitomycin C alone and in combination with X-rays on EMT6 mouse mammary tumors in vivo. J Natl Cancer Inst. 1983 Oct;71(4):765–771. [PubMed] [Google Scholar]
  28. Shrieve D. C., Harris J. W. Effects of glutathione depletion by buthionine sulfoximine on the sensitivity of EMT6/SF cells to chemotherapy agents or X radiation. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1171–1174. doi: 10.1016/0360-3016(86)90251-8. [DOI] [PubMed] [Google Scholar]
  29. Taylor C. W., Brattain M. G., Yeoman L. C. Occurrence of cytosolic protein and phosphoprotein changes in human colon tumor cells with the development of resistance to mitomycin C. Cancer Res. 1985 Sep;45(9):4422–4427. [PubMed] [Google Scholar]
  30. Thompson L. H., Rubin J. S., Cleaver J. E., Whitmore G. F., Brookman K. A screening method for isolating DNA repair-deficient mutants of CHO cells. Somatic Cell Genet. 1980 May;6(3):391–405. doi: 10.1007/BF01542791. [DOI] [PubMed] [Google Scholar]
  31. Thor H., Smith M. T., Hartzell P., Bellomo G., Jewell S. A., Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed] [Google Scholar]
  32. Willson J. K., Long B. H., Chakrabarty S., Brattain D. E., Brattain M. G. Effects of BMY 25282, a mitomycin C analogue, in mitomycin C-resistant human colon cancer cells. Cancer Res. 1985 Nov;45(11 Pt 1):5281–5286. [PubMed] [Google Scholar]
  33. Willson J. K., Long B. H., Marks M. E., Brattain D. E., Wiley J. E., Brattain M. G. Mitomycin C resistance in a human colon carcinoma cell line associated with cell surface protein alterations. Cancer Res. 1984 Dec;44(12 Pt 1):5880–5885. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES