Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1989 Apr;59(4):515–521. doi: 10.1038/bjc.1989.106

Suppression of the generation of lymphokine-activated killer (LAK) cells by serum-free supernatants of in vitro maintained tumour cell lines.

P J Guillou 1, C W Ramsden 1, S S Somers 1, P C Sedman 1
PMCID: PMC2247131  PMID: 2785396

Abstract

Serum-free supernatants from in vitro maintained gastrointestinal cancer and melanoma cell lines inhibit the generation of lymphokine (IL-2) activated killer (LAK) cells in a time and dose-related manner. Concentrations as low as 5% can inhibit the generation of LAK cytotoxicity but inhibition of proliferation is not observed until higher concentrations are included in the culture system. Inhibition is not observed with supernatants from a breast cancer cell line nor with supernatants from normal cells. There was complete concordance between the capacity of the tumour cells themselves to inhibit LAK generation and the presence of inhibitory activity in the corresponding supernatant. The inhibitory factor(s) is stable after heating to 44 and 56 degrees C. Production of the inhibitory factor(s) is sensitive to metabolic inhibitors and has a molecular weight greater than 25 kD. The inhibition of LAK cell stimulation by tumour cells may partially explain the failure of adoptively transferred LAK cells and IL-2 therapy to cause tumour regression in man.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cianciolo G. J., Lostrom M. E., Tam M., Snyderman R. Murine malignant cells synthesize a 19,000-dalton protein that is physicochemically and antigenically related to the immunosuppressive retroviral protein, P15E. J Exp Med. 1983 Sep 1;158(3):885–900. doi: 10.1084/jem.158.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cianciolo G. J., Phipps D., Snyderman R. Human malignant and mitogen-transformed cells contain retroviral P15E-related antigen. J Exp Med. 1984 Mar 1;159(3):964–969. doi: 10.1084/jem.159.3.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coffey R. J., Jr, Shipley G. D., Moses H. L. Production of transforming growth factors by human colon cancer lines. Cancer Res. 1986 Mar;46(3):1164–1169. [PubMed] [Google Scholar]
  4. Copelan E. A., Rinehart J. J., Lewis M., Mathes L., Olsen R., Sagone A. The mechanism of retrovirus suppression of human T cell proliferation in vitro. J Immunol. 1983 Oct;131(4):2017–2020. [PubMed] [Google Scholar]
  5. Cozzolino F., Torcia M., Carossino A. M., Giordani R., Selli C., Talini G., Reali E., Novelli A., Pistoia V., Ferrarini M. Characterization of cells from invaded lymph nodes in patients with solid tumors. Lymphokine requirement for tumor-specific lymphoproliferative response. J Exp Med. 1987 Aug 1;166(2):303–318. doi: 10.1084/jem.166.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cozzolino F., Torcia M., Castigli E., Selli C., Giordani R., Carossino A. M., Squadrelli M., Cagnoni M., Pistoia V., Ferrarini M. Presence of activated T-cells with a T8+ M1+ Leu 7+ surface phenotype in invaded lymph nodes from patients with solid tumors. J Natl Cancer Inst. 1986 Sep;77(3):637–641. doi: 10.1093/jnci/77.3.637. [DOI] [PubMed] [Google Scholar]
  7. Eberlein T. J., Rosenstein M., Rosenberg S. A. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med. 1982 Aug 1;156(2):385–397. doi: 10.1084/jem.156.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebert E. C., Roberts A. I., O'Connell S. M., Robertson F. M., Nagase H. Characterization of an immunosuppressive factor derived from colon cancer cells. J Immunol. 1987 Apr 1;138(7):2161–2168. [PubMed] [Google Scholar]
  9. Farram E., Nelson M., Nelson D. S., Moon D. K. Inhibition of cytokine production by a tumor cell product. Immunology. 1982 Jul;46(3):603–612. [PMC free article] [PubMed] [Google Scholar]
  10. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guillou P. J., Sedman P. C., Ramsden C. W. Inhibition of lymphokine-activated killer cell generation by cultured tumor cell lines in vitro. Cancer Immunol Immunother. 1989;28(1):43–53. doi: 10.1007/BF00205800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanauske A. R., Buchok J., Scheithauer W., Von Hoff D. D. Human colon cancer cell lines secrete alpha TGF-like activity. Br J Cancer. 1987 Jan;55(1):57–59. doi: 10.1038/bjc.1987.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harrell R. A., Cianciolo G. J., Copeland T. D., Oroszlan S., Snyderman R. Suppression of the respiratory burst of human monocytes by a synthetic peptide homologous to envelope proteins of human and animal retroviruses. J Immunol. 1986 May 15;136(10):3517–3520. [PubMed] [Google Scholar]
  14. Harris D. T., Cianciolo G. J., Snyderman R., Argov S., Koren H. S. Inhibition of human natural killer cell activity by a synthetic peptide homologous to a conserved region in the retroviral protein, p15E. J Immunol. 1987 Feb 1;138(3):889–894. [PubMed] [Google Scholar]
  15. Hersey P., Bindon C., Czerniecki M., Spurling A., Wass J., McCarthy W. H. Inhibition of interleukin 2 production by factors released from tumor cells. J Immunol. 1983 Dec;131(6):2837–2842. [PubMed] [Google Scholar]
  16. Lafreniere R., Rosenberg S. A. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res. 1985 Aug;45(8):3735–3741. [PubMed] [Google Scholar]
  17. Lotze M. T., Matory Y. L., Rayner A. A., Ettinghausen S. E., Vetto J. T., Seipp C. A., Rosenberg S. A. Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer. 1986 Dec 15;58(12):2764–2772. doi: 10.1002/1097-0142(19861215)58:12<2764::aid-cncr2820581235>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  18. Malkovský M., Jíra M., Madar J., Malkovska V., Loveland B., Asherson G. L. Generation of lymphokine-activated killer cells does not require DNA synthesis. Immunology. 1987 Mar;60(3):471–473. [PMC free article] [PubMed] [Google Scholar]
  19. Miescher S., Whiteside T. L., Carrel S., von Fliedner V. Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol. 1986 Mar 1;136(5):1899–1907. [PubMed] [Google Scholar]
  20. Monson J. R., Ramsden C. W., Giles G. R., Brennan T. G., Guillou P. J. Lymphokine activated killer (LAK) cells in patients with gastrointestinal cancer. Gut. 1987 Nov;28(11):1420–1425. doi: 10.1136/gut.28.11.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Monson J. R., Ramsden C., Guillou P. J. Decreased interleukin-2 production in patients with gastrointestinal cancer. Br J Surg. 1986 Jun;73(6):483–486. doi: 10.1002/bjs.1800730620. [DOI] [PubMed] [Google Scholar]
  22. Mulé J. J., Ettinghausen S. E., Spiess P. J., Shu S., Rosenberg S. A. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy. Cancer Res. 1986 Feb;46(2):676–683. [PubMed] [Google Scholar]
  23. Mulé J. J., Yang J., Shu S., Rosenberg S. A. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol. 1986 May 15;136(10):3899–3909. [PubMed] [Google Scholar]
  24. Muul L. M., Spiess P. J., Director E. P., Rosenberg S. A. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol. 1987 Feb 1;138(3):989–995. [PubMed] [Google Scholar]
  25. Nelson M., Nelson D. S., Spradbrow P. B., Kuchroo V. K., Jennings P. A., Cianciolo G. J., Snyderman R. Successful tumour immunotherapy: possible role of antibodies to anti-inflammatory factors produced by neoplasms. Clin Exp Immunol. 1985 Jul;61(1):109–117. [PMC free article] [PubMed] [Google Scholar]
  26. Ortaldo J. R., Mason A., Overton R. Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp Med. 1986 Oct 1;164(4):1193–1205. doi: 10.1084/jem.164.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pommier G. J., Garrouste F. L., Bettetini D., Culouscou J. M., Remacle-Bonnet M. M. In vivo delayed rejection of tumors and inhibition of delayed-type hypersensitivity by HT-29 human colonic adenocarcinoma cell line. Cancer Immunol Immunother. 1987;24(3):225–230. doi: 10.1007/BF00205634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Putnam J. B., Jr, Roth J. A. Identification and characterization of a tumor-derived immunosuppressive glycoprotein from murine melanoma K-1735. Cancer Immunol Immunother. 1985;19(2):90–100. doi: 10.1007/BF00199715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts K., Lotze M. T., Rosenberg S. A. Separation and functional studies of the human lymphokine-activated killer cell. Cancer Res. 1987 Aug 15;47(16):4366–4371. [PubMed] [Google Scholar]
  31. Rook A. H., Kehrl J. H., Wakefield L. M., Roberts A. B., Sporn M. B., Burlington D. B., Lane H. C., Fauci A. S. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol. 1986 May 15;136(10):3916–3920. [PubMed] [Google Scholar]
  32. Rosenberg S. A., Lotze M. T., Muul L. M., Chang A. E., Avis F. P., Leitman S., Linehan W. M., Robertson C. N., Lee R. E., Rubin J. T. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987 Apr 9;316(15):889–897. doi: 10.1056/NEJM198704093161501. [DOI] [PubMed] [Google Scholar]
  33. Rosenberg S. A., Spiess P., Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986 Sep 19;233(4770):1318–1321. doi: 10.1126/science.3489291. [DOI] [PubMed] [Google Scholar]
  34. Salup R. R., Wiltrout R. H. Adjuvant immunotherapy of established murine renal cancer by interleukin 2-stimulated cytotoxic lymphocytes. Cancer Res. 1986 Jul;46(7):3358–3363. [PubMed] [Google Scholar]
  35. Svennevig J. L., Lunde O. C., Holter J., Bjørgsvik D. Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer. 1984 Mar;49(3):375–377. doi: 10.1038/bjc.1984.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Topalian S. L., Solomon D., Avis F. P., Chang A. E., Freerksen D. L., Linehan W. M., Lotze M. T., Robertson C. N., Seipp C. A., Simon P. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol. 1988 May;6(5):839–853. doi: 10.1200/JCO.1988.6.5.839. [DOI] [PubMed] [Google Scholar]
  37. Werkmeister J., Zaunders J., McCarthy W., Hersey P. Characterization of an inhibitor of cell division released in tumour cell cultures. Clin Exp Immunol. 1980 Sep;41(3):487–496. [PMC free article] [PubMed] [Google Scholar]
  38. West W. H., Tauer K. W., Yannelli J. R., Marshall G. D., Orr D. W., Thurman G. B., Oldham R. K. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med. 1987 Apr 9;316(15):898–905. doi: 10.1056/NEJM198704093161502. [DOI] [PubMed] [Google Scholar]
  39. Whiteside T. L., Heo D. S., Takagi S., Johnson J. T., Iwatsuki S., Herberman R. B. Cytolytic antitumor effector cells in long-term cultures of human tumor-infiltrating lymphocytes in recombinant interleukin 2. Cancer Immunol Immunother. 1988;26(1):1–10. doi: 10.1007/BF00199840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yeoman H., Robins R. A. The effect of interferon-gamma treatment of rat tumour cells on their susceptibility to natural killer cell, macrophage and cytotoxic T-cell killing. Immunology. 1988 Feb;63(2):291–297. [PMC free article] [PubMed] [Google Scholar]
  41. de Fries R. U., Golub S. H. Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells. J Immunol. 1988 May 15;140(10):3686–3693. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES