Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1989 Apr;59(4):491–498. doi: 10.1038/bjc.1989.102

The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: implications for tumour osteolysis and macrophage biology.

N A Athanasou 1, C A Wells 1, J Quinn 1, D P Ferguson 1, A Heryet 1, J O McGee 1
PMCID: PMC2247156  PMID: 2713238

Abstract

The origin and nature of osteoclast-like multinucleated giant cells (OMGCs), in extraskeletal neoplasms, is uncertain. The ultrastructure, antigenic phenotype and function of OMGCsm in a breast carcinoma were studied in order to clarify the relationship between OMGCs, osteoclasts and other cells of the mononuclear phagocyte system (MPS). OMGCs resorbed cortical bone in a manner similar to osteoclasts. However, unlike osteoclasts, OMGCs did not possess a ruffled border or clear zone, and expressed HLA-DR and Fc receptors and CD14, CD16, CD18 and CD11 (p150,95) antigens. In addition, OMGCs failed to respond morphologically to calcitonin and were directly stimulated by parathyroid hormone (PTH) to increase bone resorption. These findings suggest that OMGCs are a specific type of macrophage polykaryon distinct from both osteoclasts and other types of inflammatory polykaryon. Occasional smaller (20-25 microns) macrophage-like cells were also associated with resorption pits. Bone resorption by OMGCs isolated from the breast indicates that a cell of the MPS can be transplanted to a new tissue location and perform a highly specialised function appropriate to an MPS cell of that tissue (i.e. the osteoclast). PTH stimulation of bone resorption by OMGCs suggests that PTH or a PTH-like protein, may be involved in the bone resorption and consequent hypercalcaemia associated with metastatic breast cancer.

Full text

PDF
491

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREEV V. C., RAITCHEV R., NIKOLOVA D. MALIGNANT OSTEOCLASTOMA OF THE SKIN. Br J Dermatol. 1964 Jan;76:40–44. doi: 10.1111/j.1365-2133.1964.tb13971.x. [DOI] [PubMed] [Google Scholar]
  2. Agnantis N. T., Rosen P. P. Mammary carcinoma with osteoclast-like giant cells. A study of eight cases with follow-up data. Am J Clin Pathol. 1979 Sep;72(3):383–389. doi: 10.1093/ajcp/72.3.383. [DOI] [PubMed] [Google Scholar]
  3. Al-Sumidaie A. M., Leinster S. J., Hart C. A., Green C. D., McCarthy K. Particles with properties of retroviruses in monocytes from patients with breast cancer. Lancet. 1988 Jan 2;1(8575-6):5–9. doi: 10.1016/s0140-6736(88)90998-1. [DOI] [PubMed] [Google Scholar]
  4. Al-Sumidaie A. M., Leinster S. J., Jenkins S. A. Transformation of blood monocytes to giant cells in vitro from patients with breast cancer. Br J Surg. 1986 Oct;73(10):839–842. doi: 10.1002/bjs.1800731026. [DOI] [PubMed] [Google Scholar]
  5. Andersson G. N., Ek-Rylander B., Hammarström L. E., Lindskog S., Toverud S. U. Immunocytochemical localization of a tartrate-resistant and vanadate-sensitive acid nucleotide tri- and diphosphatase. J Histochem Cytochem. 1986 Mar;34(3):293–298. doi: 10.1177/34.3.3005390. [DOI] [PubMed] [Google Scholar]
  6. Athanasou N. A., Quinn J., Heryet A., McGee J. O. Localization of platelet antigens and fibrinogen on osteoclasts. J Cell Sci. 1988 Jan;89(Pt 1):115–122. doi: 10.1242/jcs.89.1.115. [DOI] [PubMed] [Google Scholar]
  7. Athanasou N. A., Quinn J., McGee J. O. Immunocytochemical analysis of the human osteoclast: phenotypic relationship to other marrow-derived cells. Bone Miner. 1988 Mar;3(4):317–333. [PubMed] [Google Scholar]
  8. Athanasou N. A., Quinn J., McGee J. O. Leucocyte common antigen is present on osteoclasts. J Pathol. 1987 Oct;153(2):121–126. doi: 10.1002/path.1711530205. [DOI] [PubMed] [Google Scholar]
  9. Balogh K., Wolbarsht R. L., Federman M., O'Hara C. J. Carcinoma of the parotid gland with osteoclastlike giant cells. Immunohistochemical and ultrastructural observations. Arch Pathol Lab Med. 1985 Aug;109(8):756–761. [PubMed] [Google Scholar]
  10. Berendt R. C., Shnitka T. K., Wiens E., Manickavel V., Jewell L. D. The osteoclast-type giant cell tumor of the pancreas. Arch Pathol Lab Med. 1987 Jan;111(1):43–48. [PubMed] [Google Scholar]
  11. Brecher M. E., Franklin W. A., Simon M. A. Immunohistochemical study of mononuclear phagocyte antigens in giant cell tumor of bone. Am J Pathol. 1986 Nov;125(2):252–257. [PMC free article] [PubMed] [Google Scholar]
  12. Chambers T. J., Horton M. A. Failure of cells of the mononuclear phagocyte series to resorb bone. Calcif Tissue Int. 1984 Sep;36(5):556–558. doi: 10.1007/BF02405365. [DOI] [PubMed] [Google Scholar]
  13. Chambers T. J., Magnus C. J. Calcitonin alters behaviour of isolated osteoclasts. J Pathol. 1982 Jan;136(1):27–39. doi: 10.1002/path.1711360104. [DOI] [PubMed] [Google Scholar]
  14. Chambers T. J. Multinucleate giant cells. J Pathol. 1978 Nov;126(3):125–148. doi: 10.1002/path.1711260302. [DOI] [PubMed] [Google Scholar]
  15. Chambers T. J., Revell P. A., Fuller K., Athanasou N. A. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984 Mar;66:383–399. doi: 10.1242/jcs.66.1.383. [DOI] [PubMed] [Google Scholar]
  16. Chambers T. J. The pathobiology of the osteoclast. J Clin Pathol. 1985 Mar;38(3):241–252. doi: 10.1136/jcp.38.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cordell J., Richardson T. C., Pulford K. A., Ghosh A. K., Gatter K. C., Heyderman E., Mason D. Y. Production of monoclonal antibodies against human epithelial membrane antigen for use in diagnostic immunocytochemistry. Br J Cancer. 1985 Sep;52(3):347–354. doi: 10.1038/bjc.1985.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dorney P. Osteoclastoma of the heart. Br Heart J. 1967 Mar;29(2):276–278. doi: 10.1136/hrt.29.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Eshun-Wilson K. Malignant giant-cell tumour of the colon. Acta Pathol Microbiol Scand A. 1973 Mar;81(2):137–144. doi: 10.1111/j.1699-0463.1973.tb00004.x. [DOI] [PubMed] [Google Scholar]
  20. Factor S. M., Biempica L., Ratner I., Ahuja K. K., Biempica S. Carcinoma of the breast with multinucleated reactive stromal giant cells. A light and electron microscopic study of two cases. Virchows Arch A Pathol Anat Histol. 1977 May 13;374(1):1–12. doi: 10.1007/BF00430566. [DOI] [PubMed] [Google Scholar]
  21. Göthlin G., Ericsson J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res. 1976 Oct;(120):201–231. [PubMed] [Google Scholar]
  22. Holland R., van Haelst U. J. Mammary carcinoma with osteoclast-like giant cells. Additional observations on six cases. Cancer. 1984 May 1;53(9):1963–1973. doi: 10.1002/1097-0142(19840501)53:9<1963::aid-cncr2820530927>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  23. Hopper K. E., Wood P. R., Nelson D. S. Macrophage heterogeneity. Vox Sang. 1979;36(5):257–274. doi: 10.1111/j.1423-0410.1979.tb04434.x. [DOI] [PubMed] [Google Scholar]
  24. Kelly P. M., Bliss E., Morton J. A., Burns J., McGee J. O. Monoclonal antibody EBM/11: high cellular specificity for human macrophages. J Clin Pathol. 1988 May;41(5):510–515. doi: 10.1136/jcp.41.5.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MacDonald S. M., Pulford K., Falini B., Micklem K., Mason D. Y. A monoclonal antibody recognizing the p150/95 leucocyte differentiation antigen. Immunology. 1986 Nov;59(3):427–431. [PMC free article] [PubMed] [Google Scholar]
  26. Makin C. A., Bobrow L. G., Bodmer W. F. Monoclonal antibody to cytokeratin for use in routine histopathology. J Clin Pathol. 1984 Sep;37(9):975–983. doi: 10.1136/jcp.37.9.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marks S. C., Jr The origin of osteoclasts: evidence, clinical implications and investigative challenges of an extra-skeletal source. J Oral Pathol. 1983 Aug;12(4):226–256. doi: 10.1111/j.1600-0714.1983.tb00337.x. [DOI] [PubMed] [Google Scholar]
  28. McMahon R. F., Ahmed A., Connolly C. E. Breast carcinoma with stromal multinucleated giant cells--a light microscopic, histochemical and ultrastructural study. J Pathol. 1986 Nov;150(3):175–179. doi: 10.1002/path.1711500305. [DOI] [PubMed] [Google Scholar]
  29. McSheehy P. M., Chambers T. J. Osteoblast-like cells in the presence of parathyroid hormone release soluble factor that stimulates osteoclastic bone resorption. Endocrinology. 1986 Oct;119(4):1654–1659. doi: 10.1210/endo-119-4-1654. [DOI] [PubMed] [Google Scholar]
  30. McSheehy P. M., Chambers T. J. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology. 1986 Feb;118(2):824–828. doi: 10.1210/endo-118-2-824. [DOI] [PubMed] [Google Scholar]
  31. Moseley J. M., Kubota M., Diefenbach-Jagger H., Wettenhall R. E., Kemp B. E., Suva L. J., Rodda C. P., Ebeling P. R., Hudson P. J., Zajac J. D. Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5048–5052. doi: 10.1073/pnas.84.14.5048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mundy G. R., Ibbotson K. J., D'Souza S. M., Simpson E. L., Jacobs J. W., Martin T. J. The hypercalcemia of cancer. Clinical implications and pathogenic mechanisms. N Engl J Med. 1984 Jun 28;310(26):1718–1727. doi: 10.1056/NEJM198406283102607. [DOI] [PubMed] [Google Scholar]
  33. Nielsen B. B., Kiaer H. W. Carcinoma of the breast with stromal multinucleated giant cells. Histopathology. 1985 Feb;9(2):183–193. doi: 10.1111/j.1365-2559.1985.tb02434.x. [DOI] [PubMed] [Google Scholar]
  34. Nishiyama R. H., Dunn E. L., Thompson N. W. Anaplastic spindle-cell and giant-cell tumors of the thyroid gland. Cancer. 1972 Jul;30(1):113–127. doi: 10.1002/1097-0142(197207)30:1<113::aid-cncr2820300118>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  35. Rosen P. P. Multinucleated mammary stromal giant cells: a benign lesion that simulates invasive carcinoma. Cancer. 1979 Oct;44(4):1305–1308. doi: 10.1002/1097-0142(197910)44:4<1305::aid-cncr2820440421>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  36. Sugano I., Nagao K., Kondo Y., Nabeshima S., Murakami S. Cytologic and ultrastructural studies of a rare breast carcinoma with osteoclast-like giant cells. Cancer. 1983 Jul 1;52(1):74–78. doi: 10.1002/1097-0142(19830701)52:1<74::aid-cncr2820520115>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  37. Sutton J. S., Weiss L. Transformation of monocytes in tissue culture into macrophages, epithelioid cells, and multinucleated giant cells. An electron microscope study. J Cell Biol. 1966 Feb;28(2):303–332. doi: 10.1083/jcb.28.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Suva L. J., Winslow G. A., Wettenhall R. E., Hammonds R. G., Moseley J. M., Diefenbach-Jagger H., Rodda C. P., Kemp B. E., Rodriguez H., Chen E. Y. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987 Aug 21;237(4817):893–896. doi: 10.1126/science.3616618. [DOI] [PubMed] [Google Scholar]
  39. Tavassoli F. A., Norris H. J. Breast carcinoma with osteoclastlike giant cells. Arch Pathol Lab Med. 1986 Jul;110(7):636–639. [PubMed] [Google Scholar]
  40. Termine J. D., Eanes E. D., Greenfield D. J., Nylen M. U., Harper R. A. Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calcif Tissue Res. 1973;12(1):73–90. doi: 10.1007/BF02013723. [DOI] [PubMed] [Google Scholar]
  41. Tetteroo P. A., Lansdorp P. M., Leeksma O. C., von dem Borne A. E. Monoclonal antibodies against human platelet glycoprotein IIIa. Br J Haematol. 1983 Nov;55(3):509–522. doi: 10.1111/j.1365-2141.1983.tb02166.x. [DOI] [PubMed] [Google Scholar]
  42. Viac J., Reano A., Brochier J., Staquet M. J., Thivolet J. Reactivity pattern of a monoclonal antikeratin antibody (KL1). J Invest Dermatol. 1983 Oct;81(4):351–354. doi: 10.1111/1523-1747.ep12519941. [DOI] [PubMed] [Google Scholar]
  43. Warnke R. A., Gatter K. C., Falini B., Hildreth P., Woolston R. E., Pulford K., Cordell J. L., Cohen B., De Wolf-Peeters C., Mason D. Y. Diagnosis of human lymphoma with monoclonal antileukocyte antibodies. N Engl J Med. 1983 Nov 24;309(21):1275–1281. doi: 10.1056/NEJM198311243092102. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES